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The propagation of laser beam in the plasma has been investigated for two cases, �rst with imposing the
restriction of paraxial approximation on the beam pro�le, and second, relaxing the restriction on the pro�le up to
a certain extent. The beam width parameter of the propagating laser beam has been compared for both the cases.
Since the o�-paraxial part of the beam a�ects background densities, consequently it will also in�uence the 2nd
harmonic generation. Therefore, comparison of results has been done on the generated second harmonic, in the
light of these two cases. A notable change is found in the magnitude of second harmonic yield in modi�ed-paraxial
case as compared to the paraxial case.
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1. Introduction

To explore maximum energy from the laser beam (in all
laser-plasma applications), it is vital to understand and
be able to control the nonlinear processes that a�ect the
laser beams as they propagate through the plasma. The
high power laser beam is capable of introducing various
types of nonlinearities (thermal, ponderomotive and rela-
tivistic) during its propagation in the plasma and creates
a refractive index pro�le in the plasma across its intensity
pro�le. As a result, the laser beam perceives a lens-like
medium and focuses by its own in�uence on itself and
undergoes self-focusing. A laser beam with random �uc-
tuations of intensity over its pro�le can also focus into the
lens-like regions and the resulting phenomenon is known
as the �lamentation [1] of the beam. This phenomenon
can lead to break-up of the incident beam into intense �l-
aments. Conventionally, solutions for the laser beams can
easily be obtained in the paraxial approximation of the
wave equation and it is assumed that the paraxial wave
equation gives an accurate description for wave beams
near the axis throughout the propagation.
It is important to mention here that once the laser

beam gets �lamented, the paraxial approximation breaks
down in �lament where the focusing intensity is above a
certain level. Hence in this situation paraxial approxima-
tion is less accurate and some corrections are necessary.
The theory given by Alkhamanov et al. [2] have demon-
strated that in the limit when eikonal is expanded only
up to second power of r, the shape of the radial intensity
pro�le remains unchanged. This approximation is inad-
equate when the radial electron density varies sharply
with r in the near axis region and slowly afterwards.
However, in some experimental situation results in

laser plasmas are still not understood. The comparison
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with experiments performed does not show reasonable
agreement with the theoretical predictions.

Some experimental situation needs to go beyond the
paraxial approximation such as some solid-state lasers or
semiconductor injection lasers with a thin active layer,
generate wide-angle beams for which the predictions of
the paraxial approximation are often not su�ciently ac-
curate. Moreover, the use of di�ractive optical elements
that present small features or of tightly focusing laser
beams to reach the nonlinear range of intensities may
lead to optical �elds that cannot be accurately described
within the paraxial approximation.

In addition to that, recent advances in laser technology,
based on the chirped pulse ampli�cation technique, make
intensities greater than 1018 W/cm2 available for exper-
iments. In these experiments, the laser beam power can
be 1000 times larger than the critical value and one can
expect multiple �lamentation, focusing up to the point
where the paraxial approximation breaks down in every
�lament and radiation scatters. Hence, the paraxial ap-
proximation is less accurate for describing many phenom-
ena of laser plasma interaction in which the laser beam
gets �lamented.

Therefore the present work has been justi�ed by using
extended paraxial approximation. In theoretical stud-
ies, phenomenon of second and third harmonic genera-
tion has been studied by many groups. Sharma et al.
[3] have studied second harmonic generation by consid-
ering both relativistic and ponderomotive nonlinearities
but with paraxial approximation. Gupta et al. [4] have
studied the third harmonic generation by considering rel-
ativistic and ponderomotive nonlinearities. Sharma et al.
[5] have studied stochastic heating of electrons by consid-
ering only ponderomotive nonlinearity with non-paraxial
approximation. Sharma et al. [6] have investigated the
laser beam �lamentation and stochastic electron heating
at upper hybrid layer with both the relativistic and pon-
deromotive nonlinearity by considering paraxial approx-
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imation. But no attempt has been made to compare the
paraxial and nonparaxial approach in the laser plasma in-
teraction to study the phenomenon of �lamentation and
harmonic generation.
In the present paper, we examined the beam width pa-

rameter of the laser beam when both relativistic and pon-
deromotive nonlinearities are operative simultaneously.
The work has been justi�ed by modifying the paraxial
pro�le of the beam up to a certain level. The higher
order teams in the expansion of dielectric constant and
eikonal have been taken into account. The laser inten-
sity pro�le and other relevant quantities of plasma were
expanded up to the 4th power of radial distance r and it
makes a signi�cant di�erence in the study of propagation
of laser beam in plasma.
To examine the e�ect of using higher order terms on

the other nonlinear processes the present work has been
extended to study second harmonic generation. It is ob-
served that in extended paraxial case the �laments of the
laser beam have been split [4] and these modi�ed struc-
tures a�ect the plasma wave propagation [7] and conse-
quently harmonic generation [8, 9]. Therefore, the power
of second-harmonic generation has been determined and
compared for both paraxial and modi�ed paraxial cases.
It is observed that due to the presence of o�-axis part of
the laser beam second-harmonic yield is a�ected signi�-
cantly.
The paper is organized as follows. In Sect. 2, the laser

beam propagation with modi�ed or extended paraxial
approximation has been discussed and the expression for
coupling between laser beam and electron plasma wave
due to relativistic and ponderomotive nonlinearities is
deduced. In Sect. 3, the second harmonic generation is
discussed and the expression for second harmonic power
is deduced by taking o� axial rays into account. The sec-
ond harmonic yield has been compared for both parax-
ial and extended paraxial case. Conclusion is presented
in Sect. 4.

2. Formulation: laser beam and plasma wave

The wave equation governing the electric vector of the
laser beam of frequency ω0 is given by

∂2E

∂Z2
+

1

r

∂E

∂r
+

∂2E

∂r2
+

ω2
0

c2
εE = 0. (1)

The initial intensity distributions of the beam is assumed
as

EE∗ = E2
00 e

−r2/r20 ,

where r is the radial coordinate of the cylindrical coordi-
nate system and r0 is the initial beam width, E00 is the
axial amplitude of the beam and ε is the e�ective dielec-
tric constant [3]. In order to solve the above equation,
we can express E as

E = A0(r, z) exp(− iS0(r, z)),

where A0 and eikonal S0 are real. On solving (1) using
the standard technique, A0 and S0 can be assumed as
[2�5]:

A2
0 =

(
1 +

α00r
2
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r40f
4
0

)
E2

00

f2
0

e−r2/r20f
2
0 (2)

and eikonal S0 [2, 4] as

S0 =
S00

r20
+

S02r
4

r40
with S00 =

r2

2f0
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,

where α00, α02 are the coe�cients of r2 and r4, respec-
tively, and S00, S02 are the slowly varying function of r
and z. By taking the relativistic and ponderomotive non-
linearity under consideration and hence, using the second
order correction in the electron density equation (with
the help of ponderomotive force), total density can be
expressed as [3, 10]:
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∇2γ − (∇γ)
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γ

)]
, (3)

where n0 is the equilibrium electron density in absence of
laser beam, n is the modi�ed density of plasma electrons
due to relativistic and ponderomotive force. ωp0 is the

plasma frequency given by ω2
p0 = 4πn0e

2

m0
(where e is the

electron charge, m0 its rest mass).

Following the standard techniques [2�5, 10], one
obtains the equation governing the beam width pa-
rameter for laser beam (using normalization distance,
ξ = zc/ω0r

2
0) as
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We obtain the following equation for S02, α00, α02

as [4]:
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∂α00

∂z
= −16S02f

2
0

r20

and
∂α02

∂z
=

8S02f
2
0

r20
− 24α00S02f

2
0

r20
, (6)

the beam width parameters f0 of the laser beam depend
on the coe�cients (α00 and α02) of r

2 and r4 in extended-
-paraxial region. In order to have a numerical apprecia-
tion of contribution of o�-axial rays in the beam width
parameter (when both the relativistic and ponderomo-
tive nonlinearity are taken into account), we have per-
formed numerical computation of Eq. (2) with the help
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of Eqs. (4), (5) and (6). The coupled equations have been
solved for an initial plane wave front; the initial condi-
tions used here are f0 = 1 and df0/dz = 0 at z = 0 and
S00 = S02 = 0 at z = 0.
The results are presented in the form of Fig. 1. Fig-

ure 1a depicts the variation in laser beam intensity with
normalized distance and radial distance, when the parax-
ial approximation is taken into consideration [by substi-
tuting α00 and α02 = 0 in Eq. (4)]. It is obvious from
Fig. 1a that as the laser beam propagates through the
plasma, it gets �lamented. Figure 1a clearly expresses the
generated �laments of the laser beam in the presence of
both relativistic and ponderomotive nonlinearities. Fig-
ure 1b shows the variation of the laser beam intensity
with normalized distance and radial distance including
the o�-axial contribution. It can be clearly seen from
Fig. 1b that the �laments are split when the o�-axial
part contributes to the beam and the point at which the
laser focuses is also altered. It is obvious that in paraxial
region the intensity of laser beams is maximum at r = 0
along the distance of propagation as α00 = α02 = 0, while
in extended paraxial region the laser intensity becomes
minimum at r = 0, and maximum at r = ±0.45, as also
was veri�ed analytically by Eq. (2).

Fig. 1. Variation in laser beam width parameter with
normalized distance when relativistic and ponderomo-
tive nonlinearities are simultaneously operative, where
red dashed line is for on axis (paraxial) case when
α01 = α02 = 0 and solid black line is for o�-axial (ex-
tended paraxial) contribution when α01 ̸= α02 ̸= 0.

In Fig. 2 beam width parameter has been plotted for
both the cases paraxial and modi�ed paraxial. It can
clearly be observed from Fig. 2 that focusing becomes
faster in extended-paraxial case in comparison to parax-
ial case due to the participation of o�-axis parts (α00 ̸=
α02 ̸= 0). In Eq. (4) the results for paraxial approxima-
tion can be reproduced by substituting α00 = α02 = 0.
It is also observed (by solving Eq. (2), results are not
presented here) that in paraxial case, the intensity of
laser beam is maximal at r = 0 along the distance of
propagation as α00 = α02 = 0. The following set of
the laser beam parameters have been used in the numer-
ical calculation: the vacuum wavelength of µ; the laser
beam (λ = 1064 nm); the initial radius of the laser beams
(20 µm); laser power �ux (1018 W/cm2) at plasma den-
sity ωp = 0.06ω0; and vth = 0.1c.

Fig. 2. Variation in normalized second harmonic
power with normalized distance when relativistic and
ponderomotive nonlinearities are simultaneously oper-
ative, red dashed line is for on axis (paraxial) when
α0h = α2h = 0 and black solid line is for o�-axial (ex-
tended paraxial) contribution when α0h ̸= α2h ̸= 0.

On account of the change in the background density
due to ponderomotive force and the relativistic e�ect, the
laser beam gets �lamented. Following standard proce-
dure [2�5, 10], the equation governing the electron plasma
wave generation can be written as

∂2N

∂t2
− v2th∇2N + 2Γe

∂N
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− e
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∇(NE)

= ∇
[
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]
, (7)

where 2Γe is the Landau damping factor, v2th is the square
of the electron thermal speed, E is the sum of electric
vectors of electromagnetic wave and the self-consistent
�eld, V is the sum of drift velocities of the electron in
the electromagnetic �eld and self-consistent �eld and m
is the relativistic mass of electrons. The density compo-
nent varying at the pump wave frequency (ω0) can be
written as
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where V0 is the oscillation velocity of the electron in the
pump wave �eld and n is the time independent compo-
nent of electron density. It is obvious from the source
term of Eq. (7) that one component of N1 varies as E0.
Therefore N1 can be written as
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3. Second harmonic generation

This plasma wave generated at the pump frequency
can interact with the incident laser beam and a second
harmonic can be generated. After obtaining the expres-
sion for N ′

20 by Eq. (9), we obtain the expression for the
second-harmonic yield. The wave equation governing the
second harmonic generation is given by

∇2A2 +
ω2
2

c2
ε2(ω2)A2 =

ω2
p0

c2
N1

n0
A0, (10)

where ω2 = 2ω0 and ε2(ω2) are the e�ective dielectric
constants of the plasma at the fundamental and second
harmonic frequency.
The solution of Eq. (10) in terms of vector potential

can be written as
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−2 ik0z. (11)

We have taken only that component of N1 in Eq. (10)
which arises on account of the source term of Eq. (8),
because it is not Landau damped. Furthermore one can
write
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To solve Eq. (10), let the solution be
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and using (12) we get

A21 =
ω2
p0

c2
ω2

ω0

(
N ′

20

n0

)
E00

f0

(
1 +

α0hr
4

b20f
2
2

+
α2hr

4

b40f
4
2

)

× exp(−r2/b20f
2
2 )

k22 − 4k20
. (14)

Here b0 is the second harmonic beam width. The co-
e�cients α0h, etc. functions are the same as α00 etc.
functions in the previous section. Further we use the
initial conditions df2/dz = 0, f2 = 1 at z = 0, and
S0h = S2h = 0 at z = 0, f2 is the dimensionless width
parameter of the second harmonic radiation, given by
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We obtain the following equation for S2h, α0h, α2h as [4]:
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∂α0h

∂z
= −16S2hf

2
2

b20
, (15b)

∂α2h

∂z
=

8S2pf
2
2

b20
− 24α0hS2hf

2
2

b20
. (15c)

The constants B′ and b0 are also determined by the
boundary condition that the second harmonic generation
is zero at z = 0:
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and b0 = r0.

Using Eqs. (13), (14), (15a�c) and (16), we get
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The power of the second harmonic wave (P2) incident
across the transverse cross-section at z is given by
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where P0 =
(
ω2
0/8πc

)
πr20A

2
00. In Sect. 3, the phe-

nomenon of harmonic generation is surveyed in the pres-
ence of split �lamentary structures of an ultra intense
laser pulse. The expression for the beam width parame-
ter and power of the second harmonic has been derived

in the presence of both relativistic and ponderomotive
nonlinearities. In order to observe the second harmonic
yield P2/P0 with the distance of propagation, we have
solved Eq. (18) numerically and the results are presented
in the form of Fig. 3. Figure 3 has been plotted with and

Fig. 3. Variation in normalized power of second har-
monic with normalized distance (ξ). when both rela-
tivistic and ponderomotive nonlinearities are operative.
Red dashed line is for axial and solid black line is for
o�-axial contribution.

without the contribution of the coe�cients α00 and α02

and explicitly illustrates the comparison of the second-
-harmonic yield P2/P0 in the o�-axis (α00 ̸= α02 ̸= 0)
and on-axis cases (α00 = α02 = 0) of the laser beam.
Figure 3 shows the variation of the power of the second
harmonic with normalized distance when the paraxial as
well as extended paraxial approximation has been used.
It clearly expresses the contribution of r2 and r4 coe�-
cients on the power of second harmonic in the presence
of ponderomotive and relativistic nonlinearity, the solid
black line shows when restriction on the laser beam is
relaxed while red dashed line shows the same with re-
stricted laser beam pro�le. The second-harmonic yield
is about an order of magnitude higher when the o�-axis
case is taken. It is also obvious from this �gure that
the second-harmonic yield increases in the o�-axis case.
This is due to the fact that, by increasing the distance in
o�-axis case, the self-focusing of the laser beam becomes
faster with steep transverse intensity gradients; therefore,
the plasma wave generation and, hence, second-harmonic
yield also increases accordingly.

4. Conclusion

In this work, it is observed that the �lamentation pro-
cess becomes faster in comparison to the case when the
o�-axial contribution is not taken into account. Due
to the contribution of the o�-axial part the �lamentary
structures of the laser beam get modi�ed, these modi�ed
structures a�ect the plasma wave generation. Second-
-harmonic yield has also been studied by considering ex-
tended paraxial contribution and it is observed that in
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presence of o�-axis part second-harmonic yield is higher
in magnitude. So one can infer that the presence of o�-
-axial rays contributes signi�cantly to the phenomenon
of harmonic generation and hence harmonic yield. The
second-harmonic yield can be used as a diagnostic tool
for studying the relativistic and ponderomotive �lamen-
tation process in the laboratories.
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