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Using the reductive perturbation method a theoretical infrastructure has been developed to study the
nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of
positive ions, non-isothermal electrons and negatively charged warm dust particles with �uctuating dust
charges and drifting motion. It is shown that instead of coupled nonlinear equations as obtained by earlier
authors the nonlinear propagation of ion-acoustic waves in such a plasma can be described by an uncoupled
third order partial di�erential equation which is a modi�ed form of the Korteweg�de Vries equation. From
this equation, quasi-soliton solution is obtained for the ion-acoustic wave. The e�ects of non-isothermal
electrons, gravity, dust charge �uctuations and drifting motion on the ion-acoustic solitary waves are discussed
with application in astrophysical contexts. The importance of the model considered here has also been pointed out.
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1. Introduction

During the past years dusty plasma has been a grow-
ing �eld of research because of its existence in various
environments like cometary tails, planetary rings, aster-
oids, magnetosphere, lower ionosphere, interstellar and
circumstellar clouds, laboratory devices, etc. The study
of dusty plasma is relevant to the understanding of the
problem of star formation. The probable cause of anoma-
lous scattering of radio waves in the ionosphere may be
due to the presence of dust grains in that region. Dusty
plasma is a conglomeration of electrons, ions and µm-
-sized dust grains. The mass of dust grains is typically
about 106�1012 times the mass of an ion. The size of
dust grains may vary in the range 0.05 µm to 10 µm.
Dust grains immersed in ambient plasmas are electrically
charged by various processes. The charge on the dust
grains in�uences their motion in electromagnetic �elds
and also a�ects the coagulation rate of dust into larger
bodies. When the dust intergrain average separation is
smaller than plasma Debye length, the collective rather
than single-particle e�ects of dust grains become impor-
tant.
It has been found both theoretically and experimen-

tally that the presence of charged dust grains modi�es
the existing plasma wave spectra. Also in some cases
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the presence of massive charged dust grains gives rise to
new low-frequency eigenmodes of the dust electron�ion
plasma.

The existence of dust-acoustic wave (DAW) was �rst
predicted theoretically by Rao et al. [1], with the dust
grains providing the inertia and the pressure of inertless
electrons and ions providing the restoring force. The ex-
istence of dust-ion-acoustic wave (DIAW) was predicted
by Shukla and Silin [2]. The existence of these new eigen-
modes has also been con�rmed experimentally [3, 4]. Rao
[5] has also found the Alfven and magnetosonic modes in
dusty plasma.

The presence of charged massive dust grains can sig-
ni�cantly modify the linear and nonlinear wave propaga-
tion through plasma. When the size of the dust grains
becomes considerable, the gravitational e�ects of dust
grains become important though the e�ect is certainly
negligible for electrons and ions. In fact, a number of
authors have considered nonlinear wave propagation in
self-gravitating dusty plasma where there is a compe-
tition between gravitational self-attraction and electro-
static repulsion between the charged grains, apart from
other electromagnetic e�ects. It has been found that
the gravitational e�ect can also signi�cantly in�uence the
nonlinear wave propagation through dusty plasma.

In magnetized dusty plasma with medium-sized grains
the gravitational and magnetic e�ects may become com-
parable. It has been shown that self-gravitational e�ect
in dusty plasma may lead to macroscopic instability of
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the Jeans type [6] which is believed to play a crucial
role in the formation of many astrophysical objects such
as galaxies, stars, etc. The magneto-gravitational insta-
bility of self-gravitating dusty plasma is relevant to the
understanding of star formation. Thus the presence of
charged dust grains in plasma in�uences wave propaga-
tion and various other collective properties of the plasma.

It is well known that dust particles get negatively
charged due to attachment of the background electrons
and ions on the surface via collisions [7]. The electro-
static charging of dust grains immersed in plasma is the
main feature of dust�plasma interaction in dusty plasma.
The charge on a dust particle does not remain �xed but
depends on plasma properties, electron and ion currents
�owing into or out of dust grains, photoemission, etc. In
fact the charge on the dust grain can be considered as
an extra dynamical variable which controls the motion
of dust grains in �uctuating electrostatic �elds. It has
been shown that the charge �uctuation of the dust grains
plays signi�cant role on the dynamical behaviour of dusty
plasmas [8�11]. Paul et al. [12] have studied the e�ects
of streaming and attachment coe�cients of ions and elec-
trons on the formation of soliton in dusty plasma without
considering the e�ects of gravity. They derived an inho-
mogeneous Korteweg�de Vries (KdV) equation and pre-
dicted the existence of a negative soliton in dusty plasma
under some critical conditions and non-existence of soli-
tons in dusty plasma with variable dust charge.

Most of the earlier works on solitons and shocks in
dusty plasma are for the dust acoustic waves, though
ion-acoustic solitons and shocks can also be excited in
dusty plasma. Paul et al. [13] investigated the possibility
of the existence of ion-acoustic solitary wave structures
in gravitating dusty plasma with warm electrons, warm
ions and cold dust particles having charge �uctuations.
They showed that the nonlinear excitation of such waves
follows a pair of coupled third order partial di�erential
equations which is slightly di�erent from the usual case
of coupled KdV system; solitary wave structure is not
possible in such self-gravitating dusty plasma with warm
electrons and varying charges on the dust particles. How-
ever when the variation of charges of the dust particles
is neglected, the solitary waves may be excited. The am-
plitude and width of such solitary waves are shown to be
signi�cantly changed by the gravitational e�ects on the
dusty plasma.

In the study of ion-acoustic waves one usually consid-
ers Boltzmann distributed electrons. However this as-
sumption cannot be maintained during the passage of
waves in collisionless plasma. When the amplitude of
the wave is large, electrons may be trapped in the poten-
tial trough [14]. In fact such trapping can occur even for
small amplitude waves [15]. These trapped electrons in-
teract strongly with the wave during the evolution of the
wave and therefore cannot be treated on the same footing
as the free electrons. Nonlinear wave structures in dusty
plasma have been studied by several authors [16�20] in-
cluding the e�ects of trapped electrons and ions. The

electron�ion distributions play a crucial role in charac-
terizing the physics of nonlinear waves [14, 21, 22]. They
o�er considerable increase in the richness and variety of
wave motion in plasmas. They in�uence the condition
for existence of nonlinear wave structures. Moreover, the
presence of large amplitude waves can signi�cantly mod-
ify the electron and ion distributions.

In recent years nonlinear wave structures have been
studied by using di�erent non-Maxwellian distributions
such as non-thermal electrons [23], q-nonextensive elec-
tron velocity distributions [24�34]. El-Awady and
Moslem [33] have studied the generation of nonlinear
ion-acoustic waves in a plasma having nonextensive elec-
trons and positrons. Tribeche et al. [34] have investi-
gated arbitrary amplitude ion-acoustic solitary waves in
a two-component plasma with q-nonextensive electrons.
In fact it has been shown that for electrostatic wave prop-
agation in plasma non-Maxwellian distribution presents
a better �t to the experimental data while standard
Maxwellian distribution only provides a crude descrip-
tion [35]. Recent studies show that the instability of self-
-gravitating plasma system is modi�ed by the presence of
non-Maxwellian e�ects [24, 30, 35]. In a self-gravitating
plasma system where long-range interactions dominate
and non-equilibrium stationary states exist, each particle
is constantly feeling the in�uences by all other particles
in the system, the energy distribution of the particles in
the system is likely to be non-Maxwellian [36�38]. In fact
self-gravitating plasma systems o�er the best framework
for searching into the e�ects of non-Maxwellian distri-
butions on the properties of the system. The physics
of self-gravitating dusty plasma is becoming increasingly
relevant in determining the macroscopic behavior of ex-
tending systems in astrophysical scenario.

Non-isothermal distributions can be found during the
condensation of dust grains in dusty plasmas. The pres-
ence of non-isothermal electrons in plasma gives rise to
many interesting characteristics in nonlinear propagation
of waves including the excitation of ion-acoustic solitary
waves in plasma [39�42]. Observations of space plasmas
indicate that the occurrence of non-Maxwellian electrons
and ions is a common feature in such an environment.
Thus it becomes important to study nonlinear propaga-
tion of ion-acoustic waves in self-gravitating dusty plasma
including the e�ects of dust charge �uctuations as well
as non-isothermal electrons.

The objective of the present paper is to study the exis-
tence and characteristics of ion-acoustic solitary waves in
self-gravitating dusty plasma consisting of warm positive
ions, non-isothermal electrons and dust particles with
charge variations.

The paper is organized in the following way. In Sect. 2
we present the hydrodynamic equations for the ion and
dust �uids, density distribution for the non-isothermal
electrons, Poisson's equation for the electrostatic and
gravitational potentials, and the equilibrium charge neu-
trality condition. Section 3 is devoted to the derivation of
the modi�ed KdV equation using reductive perturbation
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method. In Sect. 4 we �nd the solutions of the modi�ed
KdV equation. Finally in Sect. 5 we discuss the result
with possible applications.

2. Basic equations

We consider an unmagnetized three-component plasma
consisting of warm ions, warm µm-sized massive nega-
tively charged dust grains and non-isothermal electrons.
In reality the size and mass of the dust grains may have
di�erent values. In our model plasma we assume that
dust grains have uniform mass and behave like point
charges. The charging of the dust particles is mainly
caused by the attachment of the ions and electrons to
the dust grains. The e�ects of photo-ionization radia-
tion etc. for charging of the dust particles are neglected.
Electrons because of their lighter mass and faster motion
are initially attached to the dust particles at a faster
rate than the ions. As a result dust particles get nega-
tively charged. Once the dust particles get enough nega-
tive charge, the chance of an electron being attached to
a negatively charged dust grain becomes much smaller
than the chance of an ion being attached to the dust
grain. So we may assume that the charge �uctuation of
dust grains is due to the attachment of positive ions only.
We consider the self-gravitating e�ect on the electrostatic
dust acoustic wave in dusty plasma which is expected to
in�uence both the linear and nonlinear modes of wave
propagation. Under such assumptions, the set of nor-
malized basic equations governing the plasma dynamics
are the following [43, 44]:
For ions

∂ni

∂t
+

∂

∂x
(nivi) = −βini, (1)

∂vi
∂t

+ vi
∂vi
∂x

+
σi
ni

∂pi
∂x

= −∂φ
∂x

− ∂ψ

∂x
− βi(vi−vd), (2)

∂pi
∂t

+ vi
∂pi
∂x

+ 3pi
∂vi
∂x

= 0. (3)

For dust particles

∂nd

∂t
+

∂

∂x
(ndvd) = 0, (4)

∂vd
∂t

+ vd
∂vd
∂x

+
σi
µdnd

∂pd
∂x

=
Zd

µd

∂φ

∂x
− ∂ψ

∂x
− βi(vd − vi), (5)

∂pd
∂t

+ vd
∂pd
∂x

+ 3pd
∂vd
∂x

= 0. (6)

Poisson's equations

∂2φ

∂x2
= ne − ni + Zdnd, (7)

∂2ψ

∂x2
=

ω2
gi

miω2
i

∑
s=e,i,d

msns. (8)

Charge neutrality condition

ni0 = ne0 + Zdnd0, (9)

where ms, ns, vs, qs and ps denote respectively the mass,
number density, velocity, charge and scalar pressure of
the s-th species (s = e, i, d) of plasma: Zd is the number
of electronic charge attached on the grains; µd = md/mi,
σi = Ti/Te; ni0, ne0 and nd0 are respectively the equi-
librium number densities of ions, electrons and dust par-
ticles; βi is the attachment coe�cient of the ions to the
dust grain: φ and ψ are respectively the electrostatic and
gravitational potentials; ωi = (4πe2ni0/mi)

1/2 is the ion
plasma frequency; wgi =

√
4πGmini0 is the ion Jeans

frequency, G being the universal gravitational constant;
other symbols have their usual signi�cance. In the above
equations we have normalized distance x by the Debye
length λD = (kBTe/4πe

2ni0)
1/2, time t by the inverse of

ion plasma frequency, all pressures by ion plasma pres-
sure ni0kBTi, φ by kBTe/e, ψ by kBTe/mi and all number
densities by ni0. It may be noted that Eqs. (3) and (6)
correspond to one - dimensional local adiabatic equation
of state

d

dt

(
psn

−3
s

)
= 0,

in which the e�ects of viscosity, thermal conductivity and
energy transfer due to collisions are neglected. Using the
total time derivative operator as

d

dt
=

∂

∂t
+ vs

∂

∂x

and the equation of continuity one can easily establish
Eqs. (3) and (6).
For the non -isothermally distributed electrons the

number density is given by [45]:

ne = ne0

(
1 + φ− 4

3
bφ3/2 +

1

2
φ2 + . . .

)
, (10)

where the constant b, called non -isothermal parameter,
is given by

b =
1− β

π1/2
, (11)

and the parameter β is de�ned as

β = Tef/Tet, (12)

in which Tef is the temperature for the free electrons and
Tet is the temperature for the trapped electrons. The
parameter β determines the nature of the distribution
function giving a plateau if β = 0 and a dip if β < 0 and
a hump if β > 0. β = 1 corresponds to Maxwellian dis-
tribution. In this paper the case β ≥ 0 will be considered
for the non -isothermal electrons.

3. Derivation of the modi�ed KdV equation

For the derivation of the nonlinear equation governing
the nonlinear dynamics of the wave, we make the usual
stretching of the space coordinates and time [45],

ξ = ε1/4(x− V t) and τ = ε3/4t, (13)

where V is the linear phase velocity and ε is a small-
ness parameter measuring the dispersion and nonlinear
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e�ects. Further, we assume the following perturbation
expansion for the �eld variables:

X = X0 + εX1 + ε3/2X2 + ε2X3 + . . . ,

βi = ε3/4βi, (14)

where X stands for ns, vs, ps, φ, ψ with φ0 = ψ0 = 0.
Using (13) and (14) in Eqs. (1)�(8) and equating the

coe�cients of the lowest order of ε we obtain

ni1 = ni0
vi1

V − vi0
, (15a)

vi1 =
1

V − vi0
[a1pi1 + a2φ1 + ψ1], (15b)

pi1 =
3

V − vi0
vi1, (15c)

nd1 = nd0
vd1

V − vd0
, (16a)

vd1 =
1

V − vd0
[b1pd1 + b2φ1 + ψ1], (16b)

pd1 =
3

V − vd0
vd1, (16c)

φ1 − ni1 + Zdnd1 = 0, (17)

4πG(mini1 +mdnd1) = 0, (18)

where

a1 = σi/ni0, a2 = 1,

b1 = σi/µdnd0, b2 = −Zd/µd

and the mass of electron me is neglected.
Using (15) and (16) in (17) we get

A1ψ1 = B1φ1. (19)

Similarly, from (18) we obtain

A2ψ1 = B2φ1. (20)

From (19) and (20) the linear dispersion relation for the
ion-acoustic wave in self-gravitating dusty plasma is de-
rived as

A1B2 −A2B1 = 0 (21)

where

A1 =
ni0
λ21

− Zdnd0
λ22

, A2 =
w2

gi

λ21
+
w2

gd

λ22
,

B1 = 1− a2ni0
λ21

+
Zdb2nd0
λ22

,

B2 = −

(
w2

gi

λ21
+
w2

gdb2

λ22

)
,

λ1 = V 2
1 − 3a1, λ2 = V 2

2 − 3b1,

V1 = V − vi0, V2 = V − vd0,

wgd =
√
4πGmdnd0 is the dust Jeans frequency.

(22)

Simplifying (21) we obtain

λ22ω
2
gi + λ21ω

2
gd = (1− b2)(ni0ω

2
gd + Zdnd0ω

2
gi). (23)

It is a biquadratic equation in V and its real positive
solutions correspond to di�erent modes of propagation.
For a cold plasma σi = 0, a1 = b1 = 0, then with vi0 =
vd0 = v0 one gets two modes of propagation given by

V = v0 ±
[
(1− b2)(ni0ω

2
gd + Zdnd0ω

2
gi)/

(ω2
gi + ω2

gd)
]1/4

. (24)

Obviously one mode has relatively high phase speed and
the other mode has relatively low phase speed. For a
cold non-drifting plasma only one mode of propagation
is possible.

Now, equating the coe�cients of ε7/4 we obtain from
Eqs. (1)�(8):

∂ni1

∂τ
+ β̄ini1 = (V − vi0)

∂ni2

∂ξ
− ni0

∂vi2
∂ξ

, (25a)

∂vi1
∂τ

+ β̄i(vi1 − vd1) = (V − vi0)
∂vi2
∂ξ

− a1
∂pi2
∂ξ

− a2
∂φ2

∂ξ
− ∂ψ2

∂ξ
, (25b)

∂pi1
∂τ

= (V − vi0)
∂pi2
∂ξ

− 3
∂vi2
∂ξ

, (25c)

∂nd1

∂τ
= (V − vd0)

∂nd2

∂ξ
− nd0

∂vd2
∂ξ

, (26a)

∂vd1
∂τ

+ β̄i(vd1 − vi1) = (V − vd0)
∂vd2
∂ξ

− b1nd0
∂pd2
∂ξ

− b2
∂φ2

∂ξ
− ∂ψ2

∂ξ
, (26b)

∂pd1
∂τ

= (V − vi0)
∂pd2
∂ξ

− 3
∂vd2
∂ξ

, (26c)

∂2φ1

∂ξ2
= φ2 −

4

3
bφ

3/2
1 − ni2 + Zdnd2, (27)

and

∂2ψ1

∂ξ2
= 4πG(mini2 +mdnd2). (28)

Using Eqs. (23)�(28) we derive the following modi�ed
KdV equation in gravitating dusty plasma containing
non-isothermal electrons:

P
∂φ1

∂τ
+Qφ

1/2
1

∂φ1

∂ξ
+
∂3φ1

∂ξ3
+Rφ1 = 0, (29)

where

P =
ni0
V1λ1

(
a2 +

A2

B2

)(
V 2
1

λ1
+

3a1ni0
λ1

+ 1

)
+
Zdnd0
V2λ2

(
Zd +

A2

B2

)(
V 2
2

λ2
+

3b1nd0
λ2

+ 1

)
, (30a)

Q = 2b, (30b)

R =
βini0
λ1

(
a2V1 +

ZdV2
λ2

+
a2
V1

)
+
Z2
dnd0V1βi
λ22
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− Zdnd0V1βi
λ22

A2

B2
+
βini0
λ1

(
V1
λ1

+
V2
λ2

− 1

V1

)
A2

B2

+
βind0Zd

λ1λ2

(
a2 +

A2

B2

)
. (30c)

If we neglect the e�ect of charge �uctuation on the dust
grain, then R = 0 and a solitary wave solution to Eq. (29)
in a frame moving with velocity λ can be obtained as

φ1 =

(
15Pλ

8Q

)2
sech4

(√
Pλ

4
(ξ − λτ)

)
. (31)

Its amplitude and width depends on the non-thermal pa-
rameter and gravitational e�ect through P and Q.
At this point we must mention that in the limit λ1 → 0

or λ2 → 0 the coe�cients A1, A2, B1, B2 in Eq. (22) and
the coe�cients P , R in Eq. (30) all diverge. So the evo-
lution Eq. (31), derived by using perturbation technique,
does not remain valid for values of V for which λ1 → 0
or λ2 → 0. It corresponds to some sort of ion-acoustic
resonance.

4. Quasi-soliton solution

Using τ/P = η and
(
8Q
15

)2
φ1 = φ Eq. (29) becomes

∂φ

∂η
+

15

8
φ1/2 ∂φ

∂ξ
+
∂3φ

∂ξ3
+Rφ = 0. (32)

To solve Eq. (32) we note that the coe�cient R involv-
ing the attachment coe�cients is practically small. With
R = 0 Eq. (32) has a soliton solution

φ = a0sech
4

((a0
16

)1/4(
ξ −

√
a0η
))
, (33)

where a0 is the amplitude, (16/a0)
1/4 is the width and√

a0 is the velocity. With R ̸= 0 we also assume that
Eq. (32) has a quasi-soliton solution

φ = a(η)sech4

((
a(η)

16

)1/4(
ξ −

√
a(η)η

))
, (34)

whose amplitude can be expressed as [46]:

a(η) = a(η0) exp(−R(η − η0)), (35)

where η0 corresponds to some initial value of the vari-
able η.
Obviously if R < 0, the amplitude of the soliton in-

creases exponentially indicating instability. On the other
hand, if R > 0 the wave amplitude decays exponentially
with the increase in the independent variable η.

5. Results and discussions

To describe the nonlinear propagation of ion-acoustic
waves through self-gravitating dusty plasma we have de-
rived an uncoupled third order nonlinear Eq. (29) which
is a modi�ed form of the usual KdV equation and includes
the e�ects of gravity, dust charge �uctuations as well as
that of non-isothermal electrons. It is important to note
that instead of coupled nonlinear equations as obtained

by earlier authors we have obtained an uncoupled equa-
tion which is advantageous. The model considered in the
present paper can be easily applied to study the e�ects
of di�erent types of electron distributions on the nonlin-
ear propagation of ion-acoustic waves in self-gravitating
plasma. We have obtained the quasi-soliton solution (34)
of the modi�ed KdV Eq. (32).
The stability or instability of the soliton is found to de-

pend on the sign of the coe�cient R of the fourth term
Rφ in the modi�ed KdV equation. The attachment co-
e�cient, non-isothermal parameter and gravitational ef-
fects all enter into the factor R in a complicated way. The
stability or instability of the solitary structure will there-
fore be determined by the relative magnitudes of these
e�ects. Thus the nonthermal parameter, the attachment
coe�cients and the gravitational e�ects involved in R
will signi�cantly in�uence the soliton properties including
soliton amplitude, speed, width as well as its stability. It
is to be noted that the non-isothermality of the electrons
has no e�ect on the linear properties of the wave but has
signi�cant e�ect on the nonlinear properties of the wave.
For example, we note from Eqs. (31) and (30b) that the
soliton amplitude decreases inversely as the square of the
non-isothermal parameter b.
We have considered �nite dust temperature in our

analysis. Though in most astrophysical situations dusts
can be considered as cold, there are some astrophysi-
cal and experimental situations where dust temperature
may become comparable to ion temperature. The tem-
perature of the dust particles is important owing to ther-
malization with the ions or orbital e�ects. In fact it has
been suggested that the dust temperature in the plane-
tary rings may have a large value compared to the elec-
tron temperature.
Inclusion of drift motion of plasma leads to two distinct

modes of wave propagation � one having comparatively
high phase speed and the other with lower phase speed.
These modes may be called as �fast mode� and �slow
mode�, respectively. It is important to point out that
instead of �nding an uncoupled equation for φ it is also
possible to �nd an uncoupled equation for ψ by following
the same method as adopted in this paper. Then one can
examine the possibility of having soliton-like variation of
the gravitational potential.
To summarize, the most important achievement in this

paper is that instead of coupled nonlinear equations as
obtained by earlier authors an uncoupled nonlinear equa-
tion has been obtained which is advantageous. Also, the
model considered here can be easily extended to study
the e�ects of di�erent types of electron distributions on
the nonlinear propagation of ion-acoustic waves in self-
-gravitating dusty plasma.
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