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First principles study of structural, elastic properties and anisotropy e�ect on the mechanical parameters of
the zinc-blende boron nitride has been performed using the pseudopotential plane wave method based on density
functional theory with the Teter and Pade exchange-correlation functional of the local density approximation. The
equilibrium lattice constant, molecular and crystal densities, bond length, the independent elastic constants, bulk
modulus and its pressure derivatives, compressibility, shear modulus, internal strain parameter, isotropy factor,
compliance constants, the Debye temperature, Young's modulus, Poisson's ratio, the Lamé constants and sound
velocity for directions within the important crystallographic planes of this compound are obtained and analyzed
in comparison with the available theoretical data reported in the literature.

PACS: 45.10.−b, 62.20.D−, 61.66.−f, 62.20.de, 81.40.Jj, 31.15.E−

1. Introduction

There is considerable interest in the study of prop-
erties of zinc-blende boron nitride compound. From
a technological point of view this material has useful
physical properties, like extreme hardness, high melting
point, and interesting dielectric and thermal characteris-
tics [1, 2].
The boron nitride (BN) is normally found in the hexa-

gonal phase [3], the zinc-blende structure was synthesized
[4] in 1957. Like diamond, BN is known to be a very hard
material [5].
Many papers [1, 2, 4, 6�24] have studied structural,

electronic and elastic properties of this compound, but
only a few of these papers [17] dealt with theoretical as-
pect have been devoted to the study of the anisotropy
e�ect on their mechanical parameters.
In order to fully take advantage of the properties

of boron nitride for eventual technological applications,
a theoretical investigation of the sound velocity, and
anisotropy e�ect on the mechanical parameters, is nec-
essary. First-principles calculations o�er one of the most
powerful tools for carrying out theoretical studies of these
properties. In the present work, we report �rst-principles
study of structural and elastic properties, sound velocity,
the Debye temperature, and anisotropy e�ect on the me-
chanical parameters for boron nitride compound in its
zinc-blende phase. This is done using the state of the art
pseudopotential plane wave method in the framework of
the density functional theory within the local density ap-
proximation.
The paper is organized as follows: in Sect. 2, we brie�y

describe the computational techniques used in this work.
Results and discussions of the structural and elastic
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properties, sound velocity, the Debye temperature, and
anisotropy e�ect on the mechanical parameters are pre-
sented in Sect. 3. Finally, conclusions and remarks are
given in Sect. 4.

2. Computational methods
The �rst-principles calculations were performed by

employing pseudopotential plane-waves (PP-PW) ap-
proach based on the density functional theory (DFT)
[25] and implemented in the ABINIT code [26]. ABINIT
computer code is a common project of the Université
Catholique de Louvain, Corning Incorporated, and other
contributors. We used the Teter and Pade (�tting of
PW92 data) parameterization [27] for local density ap-
proximation (LDA). Only the outermost electrons of each
atom were explicitly considered in the calculation. The
e�ect of the inner electrons and the nucleus (the frozen
core) was described within a pseudopotential scheme.
We used the Trouiller�Martins scheme [28] to generate
the norm-conserving nonlocal pseudopotentials, which
results in highly transferable and optimally smooth pseu-
dopotentials. A plane-wave basis set was used to solve
the Kohn�Sham equations in the pseudopotential imple-
mentation of the DFT-LDA. The major advantages of
this approach are: the ease of computing forces and
stresses; good convergence control with respect to all
employed computational parameters; favourable scaling
with number of atoms in the system and the ability
to make cheaper calculations by neglecting core elec-
trons [29].
The Brillouin zone integrations were replaced by dis-

crete summations over a special set of k-points, using the
standard k-point technique of Monkhorst and Pack [30]
where the k-point mesh used is (4 × 4 × 4). The plane-
-wave energy cut-o� to expand the wave functions is set
to be 70 Ha. Accurate convergence tests show that with
these parameters relative energy converged to better than
10−5 eV/atom.

(109)
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3. Results and discussion

3.1. Structural properties
3.1.1. Equilibrium lattice constant, bulk modules B0

and its pressure derivatives B′
0

After having determined the kinetic energy cut-o� and
the number of special k-points which gives the best con-
vergence possible of total energy, they are used to the
calculus of total energy for various values of the lattice
constant. Energies were calculated for various values of
the lattice constant, the di�erent values obtained are then
presented as function of the unit cell volume.
From the total energy presented as function of the lat-

tice volume, one can deduce the static structural prop-
erties such as the equilibrium lattice constant from the
volume which gives the minimum energy, bulk modulus
B0 and its pressure derivatives B′

0.
This can be done by �tting the values of total energy

as a function of the unit cell volume to the Murnaghan
equation [31] given by

E(V )−E(V0) =
B0V

B′
0

[
(V0/V )

B′
0

B′
0 − 1

+ 1

]
− B0V0

B′
0 − 1

, (1)

B0 = V
∂2E

∂V 2
=

4

9a

∂2E

∂a2
, (2)

where B0 is the bulk modulus given by the relation (2) at
P = 0, V0 is the equilibrium volume, E(V0) is the energy

in equilibrium volume, B′
0 is the pressure derivative of

the bulk modulus and a is the lattice constant.

Fig. 1. Evolution of the total energy as a function of
the unit cell volume of the (B3) BN.

Figure 1 shows the evolution of total energy as func-
tion of the unit cell volume of the (B3) BN. The equi-
librium lattice parameter is computed also from the
structural optimization, using the Broyden�Fletcher�
Goldfarb�Shanno (BFGS) [32] minimization.
The results for: lattice parameter a0 obtained from

the �t of the Murnaghan equation and from the BFGS
technique, bulk modulus B0, and its pressure derivative
B′

0 are reported in Table I and compared with the avail-
able experimental [1, 6�9, 16] and theoretical data [2, 4,
10�15].

TABLE I
Some physical parameters of (B3) BN at zero-pressure in comparison with experimental [1, 6�9, 16, 18�22] and theoretical
[2, 4, 10�15, 17, 23, 24] values.

Parameter
lattice constant a0 [Å] 3.593a, 3.580b

experimental 3.615 ± 0.001 [4] at 300 K, 3.615 [1, 6, 7], 3.616 [8], 3.6155 ± 0.0002 [9] at 300 K
calculated 3.575 [10], 3.576 [11], 3.62 [12] LMTO, 3.606 [2, 13], 3.623 [14, 15]
bulk modulus B0 [Mbar] 3.76a, 4.16c

experimental 3.69 [6], 3.72 [16],
calculated 3.86 [10], 3.97 [11], 3.78 [12] LMTO, 3.67 [2, 13], 3.65 [14], 3.68 [15]
pressure derivatives of the bulk modulus B′

0 3.86
experimental 4.00 [6]
calculated 3.60 [11], 34 [12] LMTO, 3.94 [14], 3.32 [15]
compressibility β [Mbar−1] 0.266a, 0.240c

molecular density dM [1022 cm−3] 8.7179b, 8.4636 [17]
crystal density g [g/cm3] 3.5928b, 3.4863 [8], 3.4880 [17] at 300 K
bond length d (cation�anion) [Å] 1.5501b, 1.5656 [17] at 300 K
bond length d (cation�cation) [Å] 2.5314b, 2.5565 [17] at 300 K
C11 [Mbar] 8.10d, 8.789e

experimental 7.80 [18], 8.37 [19], 8.28 [20], 8.12 [21], 8.19 [22]
calculated 8.44 [10], 8.20 [23], 8.18 [24]
C12 [Mbar] 1.87d, 1.696e

experimental 2.68 [18], 1.82 [19], 2.11 [20], 1.82 [21], 1.95 [22]
calculated 1.90 [10], 1.90 [23], 1.79 [24]
C44 [Mbar] 4.83d, 5.236e

experimental 3.78 [18], 4.93 [19], 4.79 [20], 4.64 [21], 4.75 [22]
calculated 4.83 [10], 4.80 [23], 4.70 [24]
shear modulus G [Mbar] 3.12, 3.78 [16], 3.19 [24]
internal parameter ξ 0.12d, 0.39f , 0.11 [23]
isotropy factor A 0.811, 0.656 [17]
compliance constants Sij [Mbar−1] S11 0.135, 0.134 [17], −S12 0.025, 0.025 [17], S44 0.212, 0.208 [17]

a from the relation of Eq. (1), b from the BFGS technique, c from the relation of Eq. (8),
d from the stress�strain relation of Eqs. (5) and (6), e from the relation of Eq. (7), f from the relation of Eq. (9)
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As can be seen, our calculated equilibrium lattice pa-
rameter a0 in two cases is in excellent agreement with
the experimental data and previous calculations: the
calculated lattice constant deviates from the measured
[1, 6, 7] and the calculated [2, 13] ones within 0.6% and
0.36%, respectively. The bulk modulus B0 is also in
good agreement with the available experimental and the-
oretical data, it is deviates from the measured [16] and
the calculated [12] ones within 1.08% and 0.53%, respec-
tively. The above results also show that the computa-
tional methods and parameters used in this paper are
reasonable.

3.1.2. Molecular and crystal densities and near-neighbor
and nearest-neighbors distances

The crystal density g is one of the simplest and most
important material parameters, and is related to the
atomic arrangement and corresponding electron density
map. Group IIIA atoms have three electrons with an
s2p1 con�guration outside a core of closed shells, and
group VA atoms have �ve electrons in a s2p3 con�gura-
tion. The IIIA and VA atoms have, therefore, an average
of four valence electrons per atom available for binding.
For such a covalent bonding each V atom donates an

electron to a III atom, so that V+ and III− ions are
formed, each with four valence electrons. An ionic bond
is due to the Coulomb attraction between the excess pos-
itive and negative charges on ions formed by transfer of
electrons from the metallic to the nonmetallic atom. The
bonds in most III�V compounds are not adequately de-
scribed by any of these extreme types, but have interme-
diate characteristics intermediate between those usually
associated with the terms covalent and ionic.
There are four molecules in a unit cell of the zinc-

-blende lattice. If an accurate lattice constant is avail-
able, the calculation of g gives in principle a good, reli-
able value.
For BN each B (N) has four nearest neighbors of B (N)

at a distance of
√
3a0/4 at the corners of a regular tetra-

hedron. The spacing between the bond length B�B (or
N�N) atoms is equal to a0/

√
2. The calculated molecu-

lar and crystal densities, and the bond length distances
from the lattice constant obtained from the BFGS tech-
nique for (B3) BN at zero-pressure are reported also in
Table I and compared with the available experimental [8]
and theoretical data [17] obtained at ambient tempera-
ture (at 300 K).

3.1.3. Hydrostatic pressure e�ect

In order to further validate the reliability and accuracy
of our calculated structural properties for (B3) BN, the
calculated unit cell volumes under a series of applied hy-
drostatic pressures (in the 0 to 4 Mbar range with the
step of 0.5 Mbar) were used to construct the P�V data
set (Fig. 2), which was subsequently �tted to a third-
-order by the Birch�Murnaghan equation [33]:

P (V ) =
3

2
B0

[(
V0

V

)7
3

−
(
V0

V

)5
3

]

×

{
1 +

3

4
(4−B′

0)

[(
V0

V

)2
3

− 1

]}
, (3)

where B0 is the bulk modulus, V0 is the volume of unit
cell, is �xed at the value determined from the zero-
-pressure data, V is the volume of unit cell at P ̸= 0
and B′

0 is its pressure derivative at zero pressure.
The continuity in pressure�volume phase diagram in-

dicates the absence of the structural phase transition
from zinc-blende (B3) to rock salt (B1) up to pressure
of 4 Mbar.

Fig. 2. P�V relation for (B3) BN compound. The
solid lines are given by the Birch�Murnaghan equation.

Fig. 3. Pressure dependence of the volume and −(V −
V0)/V0 of (B3) BN compound.

The available theoretical data reported in the litera-
ture of this parameter are respectively: 8.50 Mbar [12],
11.1 Mbar [13], 5.5 Mbar [15], and 6.24 Mbar [34]. These
values con�rm also our result.
In Fig. 3 we plot the variation of the volume V and

the relative changes of the volume −(V − V0)/V0 versus
applied hydrostatic pressure (p).

3.2. Elastic properties

3.2.1. Elastic sti�ness constants
The elastic constants are of interest because of the in-

sight they give into the nature of the binding forces in
solids, and they are also of importance for the thermal
properties of solids. The number of independent elas-
tic constants is usually reduced if the crystal possesses
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symmetry elements, and in the important case of cubic
crystals there are only three independent sti�ness con-
stants. The array of values of the elastic sti�ness con-
stant is therefore reduced for a cubic crystal to the ma-
trix [C] [35]:

[C] =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (4)

In a cubic lattice, three independent elastic constants
C11, C12, and C44 are determined by employing suitable
lattice distortions. Following the work of Nielsen and
Martin [36], we determine these constants. Values for
C11 and C12 can be found from the stress�strain relation
with the application of an ε1 strain. This strain scales
the x-dimensions by (1 + ε1) while maintaining constant
y- and z-dimensions. For small strain, the harmonic ap-
proximation de�nes the relations as:

C11 = σ1/ε1, (5a)

C12 = σ2/ε1, (5b)

where σi (i = 1, 2) represents the stress.

From the following stress�strain relation [36]:

σ4 =

[
C0

44 − Ω−1Φ
(
ξ a0 /4

)2
]
ε4 = C44ε4. (6)

One can obtain the elastic constant C44. In Eq. (6), C44
0

denotes the elastic constant in absence of internal dis-
placements u, Ω is the volume of the unstrained unit
cell, Φ is the force constant, and ξ is the internal strain
parameter. With two independent calculations, setting
ε4 = 0 and a small relative displacement u and then with
small ε4 and u = 0, we can determine C44 and ξ; details
about this method can be found in Ref. [36]. The calcu-
lations were performed with ε1 = ±0.002 in the direction
(100) to determine C11 and C12 and with ε4 = ±0.004

and u = ±0.002
√
3a0 in the direction (111) to �nd C44

and ξ.

The obtained elastic sti�ness constants C11, C12, C44

and the internal strain parameter ξ of (B3) BN are listed
and compared with the experimental [18�22] and other
theoretical [10, 23, 24] data in Table I.

The requirement of mechanical stability in a cubic crys-
tal leads to the following restrictions on the elastic con-
stants, C11−C12 > 0, C11 > 0, C44 > 0, C11+2C12 > 0.
The elastic constants in Table I obey these stability
conditions, including the fact that C12 must be smaller
than C11. Our calculated elastic constants also obey the
cubic stability conditions, meaning that C12 < B < C11.
The elastic sti�ness constant Cij versus lattice constant
a (a is given in Å and Cij in 1010 Pa) for some cubic
group IV, III�V and II�VI semiconductors can be given
by [37]:

lnC11 = −4.59 ln a+ 10.33, (7a)

lnC12 = −2.54 ln a+ 6.07, (7b)

lnC44 = −5.20 ln a+ 10.59. (7c)

For cubic crystals the bulk modulus B0 and the com-
pressibility β are related to elastic constants by [38]:

B0 =
1

β
= (C11 + 2C12)/3. (8)

As can be seen, also that our calculated bulk modulus
B0 obtained from Eq. (8) is also in good agreement with
the experimental data and previous calculations, it devi-
ates from the measured [16] and the calculated [15] ones
within 1.07% and 2.17%, respectively.
For diamond and zinc-blende crystals the internal

strain parameter ξ and the elastic constants are also re-
lated by [39]:

ξ =
C11 + 8C12

7C11 + 2C12
. (9)

The shear modulus G and the isotropy factor A in a cu-
bic crystal are respectively de�ned as [37]:

G = (C11 − C12)/2, (10)

A = (C11 − C12)/2C44. (11)

The obtained values of the elastic sti�ness constants Cij ,
the internal strain parameter ξ, the shear modulus G and
the isotropy factor A of (B3) BN are also listed and com-
pared with other theoretical and experimental data in
Table I.
From the data of Table I it can be seen that our cal-

culated elastic sti�ness constants C11, C12, and C44 are
in excellent agreement with the experimental and other
theoretical data, they are deviating from the measured
[21] respectively within 0.24%, 2.74% for C11 and C12

and from the measured [18] with 1.58% for C44.

3.2.2. Compliance constants
The macroscopic theory of the elastic properties of

solids is described in detail in tensor notation by Nye [40].
The elastic compliance tensor [S], which has the same
form as [C], is connected reciprocally with the tensor [C]
through Hooke's relation. Explicit equations for the com-
ponent Sij in terms of Cij can be given by

S11 = (C11 + C12)/[(C11 − C12)(C11 + 2C12)], (12a)

S12 = (−C12)/[(C11 − C12)(C11 + 2C12)], (12b)

S44 = 1/C44. (12c)

The obtained values of the compliance constants Sij of
(B3) BN are listed and compared with other theoretical
data [17] in Table I.

3.3. Young's modulus, Poisson's ratio
and Lamé constants

There is considerable interest in the e�ect of mechani-
cal stresses resulting from crystal growth and device pro-
cessing on the behavior and reliability of semiconductor
devices. Precise computation of such stresses requires
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knowledge of Young's modulus and Poisson's ratio, in
particular for speci�c orientations within the crystallo-
graphic plane de�ning the surface of the semiconductor.
Young's modulus Y is not isotropic in cubic zinc-blende
type crystals [41].
The modulus Y for an arbitrary crystallographic direc-

tion m can now be given by [37]:

1

Y
= S11 − 2

(
S11 − S12 −

1

2
S44

)
×
(
m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3

)
, (13)

where the Sij values are the elastic compliance constants
and the m values are the direction cosines for m. Pois-
son's ratio P also varies with orientation. If a longitu-
dinal stress in the direction m and the transverse strain
along the orthogonal direction n are under consideration,

then the ratio P can be given by [37]:

P =

[(
S11 − S12 −

1

2
S44

)(
m2

1n
2
1 +m2

2n
2
2 +m2

3n
2
3

)]
/[

S11 − 2

(
S11 − S12 −

1

2
S44

)
×
(
m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3

)]
. (14)

The modulus Y for the direction of the cube axes (⟨100⟩)
is given by Y = 1/S11. The ratio P , in this case, is writ-
ten as P = −S12/S11. The variations of Y and P for
directions within the important crystallographic planes
{100}, {110}, and {111} are listed in Table II. It should
be noted that the Y and P are invariant within the {111}
plane [42].

TABLE II

Mechanical parameters of (B3) BN: Young's modulus Y , Poisson's ratio P and the Lamé constants (µ, λ)
for directions within the important crystallographic planes {100}, {110} and {111} at p = 0, T = 0 K.

Plane Direction Y [Mbar] p µ [Mbar] λ [Mbar]

{100} ⟨001⟩ 7.402, 7.46 [17]

⟨011⟩ 9.274, 9.39 [17]

{110} ⟨001⟩ 7.402, 7.46 [17]

⟨111⟩ 10.123, 10.3 [17]

{111} 9.274, 9.39 [17]

{100} m = ⟨010⟩, n = ⟨001⟩ 0.189, 0.187 [17] 3.113 1.891

m = ⟨011⟩, n = ⟨011⟩ −0.016, −0.024 [17] 4.712 −0.146

{110} m = ⟨001⟩, n = ⟨110⟩ 0.189, 0.187 [17] 3.113 1.891

m = ⟨111⟩, n = ⟨112⟩ 0.075, 0.069 [17] 4.708 0.831

{111} 0.153, 0.149 [17] 4.022 1.773

[17] Calculated using (S11 = 0.137, S12 = −0.025, S44 = 0.208) Mbar−1 at T = 300 K.

For cubic crystals, the Lamé constants (µ, λ), Young's
modulus Y and the Poisson ratio P are related by [43]:

µ = Y/[2(1 + P )], (15)

λ = PY/[(1 + P )(1− 2P )]. (16)

The variations of µ and λ for directions within the im-
portant crystallographic planes {100}, {110} and {111}
are listed also in Table II. Unfortunately, there are no
data available in the literature on these properties for
this compound. Future experimental work or other theo-
retical calculations will contribute with more tests for the
validating of our calculated results of these parameters.

3.4. Sound velocity

A perfect isotropic material is one for which isotropy
factor = 1.0. As seen in Table II, BN is not perfectly
isotropic in its elastic properties. Sound velocities in this
material are thus, strongly dependent on the propagation
directions. If the crystal density g and the sti�ness con-

stant Cij of a solid are known, one can calculate the bulk
sound velocity v (long-wavelength, nondispersive) from
the following general relation [35, 37]:

v = (Cij/g)
1/2. (17)

In general, there are three types of wave motion for a
given direction of propagation in the crystal, but only
for a few special directions can the waves be classi�ed
as pure longitudinal or pure transverse. If we neglect
nonlinear terms in the equation of motion, pure longitu-
dinal sound waves may propagate in the [100], [110], and
[111] directions. Pure transverse waves may propagate
not only in these three directions, but also in the crystal-
lographic directions [hkl] (h = k; l arbitrary) and [hk0]
(h and k arbitrary).

We can see in Table III of Ref. [41] de�nition of sound
velocity expressed in terms of these constants along the
high-symmetry directions [100], [110] and [111] in cubic
zinc-blende crystals. The obtained values of sound veloc-
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ities for major directions in the (B3) BN at zero-pressure
are reported in Table III.

TABLE III

The sound velocities for major directions in the cubic,
zinc-blende lattice of BN, as controlled by the second-
-order elastic constants Cij .

a Longitudinal acoustic waves,
b transverse acoustic waves.

Propagation Direction or plane Sound velocity
direction of polarization [×105 cm/s]

[100] [100]a 15.015, 15.3 [17]

(100)b 11.597, 11.7 [17]

[110] [100]a 15.672, 16.8 [17]

[001]b 11.597, 11.7 [17]

[110]b 9.3113, 9.5 [17]

[111] [111]a 15.886, 17.3 [17]

(111)b 9.6658, 10.3 [17]

[17] Calculated using C11 = 8.20, C12 = 1.90, C44 =
4.80 Mbar and g = 3.8880 g/cm3 at T = 300 K.

3.5. Calculation of Debye temperature

Having calculated the bulk modulus B and shear mod-
ulus G, one can calculate the Debye temperature, which
is an important fundamental parameter closely related to
many physical properties such as elastic constants, spe-
ci�c heat and melting temperature.
At low temperature the vibrational excitation arises

solely from acoustic modes. Hence, at low temperatures
the Debye temperature calculated from elastic constants
is the same as that determined from speci�c heat mea-
surements. One of the standard methods to calculate the
Debye temperature (θD) is from elastic constants data,
since θD may be estimated from the average sound veloc-
ity, vm by the following equation [29]:

θD =
h

kB
(3/4πV a)1/3vm, (18)

where h is the Planck constant, kB � the Boltzmann con-
stant and Va � the atomic volume. The average sound
velocity is given by [29]:

vm =

[
1

3

(
2

v3t
+

1

v3l

)]−1/3

, (19)

where vl and vt are the longitudinal and transverse sound
velocity obtained using the shear modulus G, the bulk
modulus B and the density g from Navier's equation [29]:

vl = [(3B + 4G)/3g]
1/2

, (20)

vt = (G/g)1/2. (21)

The calculated sound velocity and Debye temperature
as well as the density for (B3) BN are given in Table IV.
To the best of our knowledge, there is a little [44�46]
data available in the literature on these properties for
this compound.
The Debye temperature calculated is in excellent

agreement with data available in the literature [44�46],

TABLE IV

The longitudinal, transverse and average sound veloc-
ity (vl, vt, vm in 103 m/s) calculated from isotropic
elastic modulus, and the Debye temperatures (θD in K)
derived from the average sound velocity for (B3) BN
in comparison with data available in the literature
[17, 44�46].

vl 15.015, 15.3 [17]

vt 9.3113, 9.5 [17]

vm 10.266

θD 1707.56, 1613 [44] at 300 K, 1730 [45] at 70 K,

1987 [46] at 0 K

which deviate from the measured [45] with 1.3%. This
marked result signi�ed the good values obtained for the
second-order elastic constants Cij and other mechanical
parameters.

4. Conclusions

Employing PP-PW approach based on density func-
tional theory, within the local density approximation, we
studied the structural and elastic properties, sound ve-
locity, and the Debye temperature and anisotropy e�ect
on the mechanical parameters for boron phosphide in its
structure zinc-blende phase leads to the conclusions to
be summarized as follows:
1. The calculated structural properties of this com-

pound are in good agreement with the available experi-
mental and theoretical data reported in the literature.
2. The pressure dependence of the unit cell volume

and relative unit cell volume parameters are calculated,
the continuity in pressure�volume phase diagram indicate
the absence of the structural phase transition from zinc-
-blende (B3) to rock salt (B1) up to pressure of 4 Mbar.
3. A numerical �rst-principles calculation of the elastic

constants (C11, C12, and C44), the results obtained are
also in good agreement with the available experimental
and theoretical data reported in the literature.
4. The values obtained of the elastic constants was used

to predict the anisotropy e�ect on the several mechani-
cal parameters such as Young's modulus Y , Poisson's ra-
tio P , Lamé constants (µ, λ) and the sound velocity v for
directions within the important crystallographic planes
and it was used also to calculate the Debye tempera-
ture for (B3) BN compound. The result obtained of the
Debye temperature is also in good agreement with the
available experimental and theoretical data reported in
the literature.
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