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The terms for operation of the coaxial waveguide, entirely �lled with azimuthally magnetized latching ferrite,
as a digital nonreciprocal phase shifter for the normal TE01 mode, are found. They are classi�ed as physical,
mathematical and functional ones. The physical prerequisites are drawn from the phase curves of the structure
and specify the boundaries of the interval in which it produces di�erential phase shift for a given numerical
equivalent of the modulus of o�-diagonal ferrite permeability tensor element. The mathematical condition brings
the parameters of con�guration together with certain roots of its characteristic equation, derived in terms of
complex Kummer and Tricomi con�uent hypergeometric functions and with the related to them positive real
L2(c, ρ, n) numbers (c = 3, 0 < ρ < 1, n = 1). The functional criteria determine the borders of the domain
of phase shifter operation of the geometry. These are functions, de�ned for a �xed central conductor thickness
which express in normalized form the impact of the guide radius on the phase shift at the cut-o� frequencies and
at the envelopes, denoting the termination of the phase curves for negative ferrite magnetization from the side
of higher frequencies. The same are reckoned, employing iterative methods, consisting in a repeated numerical
solution of the equation mentioned, followed by a computation of the guide radius and phase constant of the wave
and are plotted graphically. The in�uence of the parameters of transmission line on the area referred to is analyzed.

PACS: 02.60.Lj, 02.90.+p, 41.20.�q, 41.20.Jb, 85.70.Ge

1. Introduction

It is thought that the circular waveguides, comprising
coaxially positioned cylindrical or toroidal inserts of azi-
muthally magnetized ferrite that support normal TE01

mode, are natural microwave structures for digital non-
reciprocal phase shifters [1�35]. This is due to their
ability to a�ord di�erential phase shift when latching
the magnetization between its two stable states and to
their symmetry by reason of which the electromagnetic
wave interacts with the entire body of the anisotropic
medium. The devices in question could be employed
in the design of electronically scanned antenna arrays
[36�40]. Such is e.g. the Kashin and Safonov monopulse
transmit-receive phased array with polarization of tar-
gets in the main beam [40]. As an antenna element for
the X and C bands a composition has been proposed,
constructed of a phase shifter of the type referred to and
of axially symmetric transmitters which could be man-
ufactured of the same material. The magnetizing con-
ductor passes along the centre-line of the setup and has
two shoulders, serving like current inputs. Symmetrizing
wires are placed in their neighbourhood, providing inde-
pendence of the propagation conditions of the wave inside
the phase shifter of its polarization. Steps are taken to
match the wires inhomogeneity. This mechanism enables
a phasing of the elements of the array with the help of one
and the same control program for whatever polarization.
It is nonreciprocal and needs rephrasing in changing the
transmit and receive regimes of the antenna.
In this investigation three kinds of criteria for phase

shifter operation of a coaxial ferrite waveguide with azi-

muthal magnetization which sustains normal TE01 mode,
are established. With that end in view, the phase curves
of the transmission line, some roots of its character-
istic equation, written by complex con�uent hypergeo-
metric functions and the bound up with them positive
real L2(c, ρ, n) numbers [30] (denoted also as L(c, ρ, n)
[19, 28]), are harnessed. Besides, a numerical approach,
widely exploiting iterative techniques is used, too. The
domain in which phase shift is produced, is depicted
graphically. The in�uence of structure parameters on
it is examined.

2. Synopsis of boundary-value problem

An in�nitely long, perfectly conducting coaxial wave-
guide of inner and outer conductor radii r1 and r0, re-
spectively, �lled entirely with latching ferrite, magnetized
in azimuthal direction to remanence, is threshed out (see
inset, Fig. 6), propagating normal TE0n (Hr, Eθ, Hz)
modes of phase constant β. A cylindrical co-ordinate
system (r, ϑ, z) is accepted. The anisotropic medium

possesses a Polder permeability tensor
↔
µ= µ0[µij ], i,

j = 1, 2, 3, with nonzero components µii = 1 and
µ13 = −µ31 = − jα, α = γMr/ω, −1 < α < 1 (γ �
gyromagnetic ratio, Mr � ferrite remanent magnetiza-
tion, ω � angular frequency of the wave) and a scalar
permittivity ε = ε0εr (ε0 and µ0 � free space permit-
tivity and permeability, respectively). The characteristic
equation of con�guration [20, 25, 28]:

Φ(a, c;x0)/Ψ(a, c;x0) = Φ(a, c; ρx0)/Ψ(a, c; ρx0) (1)

is represented in terms of the Kummer and Tricomi con-
�uent hypergeometric functions Φ(a, c;x) and Ψ(a, c;x),

(63)
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respectively [41], in which a = 1.5− jk, c = 3, x0 = jz0,
k = αβ̄/(2β̄2), −∞ < k < +∞, β̄2 = (1 − α2 − β̄2)1/2,
z0 = 2β̄2r̄0, z0 > 0, ρ = r̄1/r̄0, 0 < ρ < 1 � cen-
tral conductor to waveguide radius ratio. The introduc-
tion of barred (normalized) quantities: β̄ = β/(β0

√
εr),

β̄2 = β2/(β0
√
εr) (β2 = [ω2ε0µ0εr(1 − α2) − β2]1/2 �

radial wavenumber), r̄1 = β0r1
√
εr, and r̄0 = β0r0

√
εr,

(β0 = ω
√
ε0µ0 � free space phase constant) permits to

obtain general results, holding for all admissible values of
parameters and all frequency bands in which transmis-

sion may be realized. If χ
(c)
k,n(ρ) (n = 1, 2, 3, . . .) desig-

nates the positive purely imaginary roots of Eq. (1), the

same is valid in case of β̄2 = χ
(c)
k,n(ρ)/(2r̄0) that yields

the eigenvalue spectrum of the �elds explored. In what
follows normal TE01 mode (n = 1) is examined solely.

3. Some features of the coaxial waveguide

with azimuthally magnetized ferrite

3.1. Main points

The analysis of the phase curves of geometry under
study [19], parts of which are reproduced in Figs. 1�3,
discloses its nonreciprocal character which is manifested
in the following [28]:
i) For all allowable numerical equivalents of the mag-

nitude of o�-diagonal ferrite permeability tensor element
|α| there are values of the normalized guide radius r̄0
for which propagation may take place with two di�er-
ent phase constants β̄+ and β̄−, corresponding to posi-
tive and negative magnetization. Without exception it
holds: β̄− > β̄+. Accordingly, the β̄−(r̄0) � character-
istics (drawn by dashed lines) are situated above the
β̄+(r̄0) � ones (plotted by solid curves), (cf. Figs. 1�3
and Fig. 1 in [19]). For every single pair of parameters

Fig. 1. Normalized phase characteristics and di�eren-
tial phase shift of the azimuthally magnetized coaxial
ferrite waveguide for normal TE01 mode in case ρ = 0.1
and |α| = ±0.95.

Fig. 2. Normalized phase characteristics of the azi-
muthally magnetized coaxial ferrite waveguide for the
forward and backward normal TE01 mode in the vicin-
ity of cut-o� in case ρ = 0.1 and |α| = ±0.95.

Fig. 3. Graphical illustration of the physical criterion
for phase shifter operation of the azimuthally magne-
tized coaxial ferrite waveguide for normal TE01 mode
in case ρ = 0.1 and |α| = ±0.95.

{r̄0, |α|}, di�erential phase shift ∆β̄ = β̄− − β̄+ may be
obtained. The quantity∆β̄ is always positive (see Fig. 1);

ii) All β̄−(r̄0) � curves are �nite and the β̄+(r̄0) � ones
� in�nite. The couple of β̄−(r̄0) and β̄+(r̄0) � character-
istics for the same |α| originates in the cut-o� frequency
(bifurcation) point (r̄0cr, β̄cr) at the horizontal axis of
phase portrait, denoted by a circle (cf. Figs. 1�3 and
Fig. 1 in [19]). A special En1− � envelope (depicted by a
green dotted line) exists, restricting the β̄−(r̄0) � curves
from the side of higher frequencies. The β̄+(r̄0) � char-
acteristics are unlimited from above (see Figs. 1 and 3,
and Fig. 1 in [19]);
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iii) The β̄−(r̄0) � curves have a bulge (area of double-
-valuedness) below cut-o�. The leftmost (inversion) point
(r̄0i−, β̄i−) (shown by a star) denotes the lowest fre-
quency for which propagation may take place for α− < 0
(cf. Fig. 2). For the same r̄0 from the interval (r̄0i−, r̄0cr)
the structure may guide a forward and a backward wave
(whose characteristics are portrayed by red and blue
dashed lines, respectively) with two di�erent phase con-

stants β̄
(1)
− and β̄

(2)
− (β̄

(1)
− > β̄

(2)
− ), respectively on con-

dition that α− < 0. No transmission is possible in this
area provided α+ > 0 (see Fig. 2);
iv) A magnetically controlled cut-o� is observed. If

r̄0 = r̄0cr, the propagation stops when α+ > 0 and
β̄cr+ = 0 (kcr+ = 0). In case α− < 0, however, for the
same r̄0, (r̄0 = r̄0c− ≡ r̄0cr) two waves of di�erent phase
constants may be excited. The �rst of them is in cut-o�

regime and for it β̄cr− = 0 (kcr− = 0, β̄cr− ≡ β̄
(2)
cr−).

The second wave is in transmission state with constant
β̄c− ̸= 0 (kc− ̸= 0, kc− < kcr−, β̄c− ≡ β̄

(1)
c− ) (cf. Fig. 2).

3.2. Some important formulae

i) The phase curves are calculated from [25, 28]:

r̄0 =
(
kχ

(c)
k,n(ρ)/α

){[
1 + (α/(2k))

2
]
/
(
1− α2

)}1/2

,

(2)

β̄ =
{(

1− α2
)
/
[
1 + (α/(2k))

2
]}1/2

. (3)

ii) The critical guide radius is determined by the ex-
pression [25, 28]:

r̄0cr = χ
(c)
0,n(ρ)/

(
2
√
1− α2

cr

)
. (4)

iii) The equation β̄en− = β̄en−(r̄0en−) of the envelope,
written in parametric form, is [19, 25, 28]:

r̄0en− = L2(c, ρ, n)
/[

|αen−|
(
1− α2

en−
)1/2]

, (5)

β̄en− =
(
1− α2

en−
)1/2

, (6)

where L2(c, ρ, n) are certain positive real numbers [30]
and αen− < 0 is a parameter. Assuming ρ = 0.1 and

0.5, it is found out that: χ
(c)
0,n(ρ) = 7.88188 32204

and 12.78631 35232, and L2(c, ρ, n) = 7.65009 and
30.06288 (c = 3, n = 1). The following subscripts are
used: (i) �+� (���) for the quantities, answering to the
positive (negative) magnetization; (ii) �cr� (�c−�) for the
ones, relating to cut-o� (to transmission state for α− < 0,
linked with the cut-o�, cf. item (iv) in Sect. 3.1); (iii)
�en−� (�e+�) for those, describing the envelope (the point
from the β̄+(r̄0) � curve for certain |α| of abscissa equal
to that of the end point of the β̄−(r̄0) � one for the same
|α| at the envelope); see Figs. 1, 2.

4. Physical prerequisites for phase

shifter operation

Bearing in mind the abovesaid, it might be concluded
that for any ρ and �xed |α| [28]:
i) At positive (negative) ferrite magnetization normal

TE01 mode could be sustained in the semi-closed interval

∆+ = [r̄0cr,+∞) (bilaterally restricted interval ∆− =
[r̄0i−, r̄0en−]);
ii) For both signs of magnetization the wave may be

guided in the interval ∆ = ∆+ ∩∆− (∆ = [r̄0cr, r̄0en−])
of overlapping (of intersection) of ∆+ and ∆−;
iii) Di�erential phase shift may be a�orded in ∆;
iv) For the abscissa r̄0 of the working point (r̄0, β̄+)

((r̄0, β̄−)), lying at the curve β̄+(r̄0) (β̄−(r̄0)) which con-
forms to α+ > 0 (α− < 0), it is true: r̄0 ∈ ∆+(r̄0 ∈ ∆−).
v) For the common abscissa r̄0 of the pair of work-

ing points (r̄0, β̄+) and (r̄0, β̄−), situated at the curves
β̄+(r̄0) and β̄−(r̄0), respectively for the same |α|, it is
valid: r̄0 ∈ ∆.
Thus, the physical criterion the geometry of any ρ to

behave as a phase shifter for certain |α|, is
r̄0cr < r̄0 < r̄0en−. (7)

(The above discussion is visualized in Fig. 3.)

5. Mathematical condition for phase

shifter operation

The inequalities [28]:

χ
(c)
0,n(ρ)/2 < r̄0

√
1− α2 < L2(c, ρ, n)/|α| (8)

express the mathematical criterion of the structure to
work as a phase shifter. It is a direct corollary of
relation (7), combined with Eqs. (4) and (5) in case
|α| ≡ |αcr| ≡ |αen−| and speci�es the sets of parame-
ters {ρ, r̄0, |α|} for which ∆β̄ is produced. (Everywhere
in Ref. [28] the symbol L(c, ρ, n) stands for L2(c, ρ, n).)

6. Functional criteria for phase shifter operation

6.1. Left limiting function

Since β̄cr+ = β̄cr− = β̄cr = 0, for the couple of
points (r̄0c−, β̄c−) and (r̄0cr, β̄cr+), (r̄0c− ≡ r̄0cr), it is
ful�lled: ∆β̄cr = β̄c− (cf. Figs. 1, 2). The function
∆β̄cr = ∆β̄cr(ρ, r̄0, n), presented in parametric form
as [28]:

β̄c− = β̄c−(α−, kc−), (9)

r̄0 = r̄0(ρ, α−, kc−, n), (10)

determines the left limit (bounded with cut-o�) of the
domain in which phase shift is observed, if r̄0 ≡ r̄0cr,
r̄0cr = r̄0cr(ρ, αcr, n) (see Eq. (4)) and α− = −|αcr|.
Equations (9) and (10) are given explicitly by the ones (2)
and (3) in which α and k are substituted by α− and kc−.

6.2. Right limiting function

At certain |α| = |αen−| for the pair of points
(r̄0en−, β̄en−) and (r̄0e+, β̄e+), (r̄0e+ ≡ r̄0en−) (see
Fig. 1), it is true [28]:

∆β̄en− = β̄en− − β̄e+. (11)

The function ∆β̄en− = ∆β̄en−(ρ, r̄0, n), written para-
metrically as [28]:



66 M.N. Georgieva-Grosse, G.N. Georgiev

β̄en− = β̄en−(α−), (12)

β̄e+ = β̄e+(α+, ke+), (13)

r̄0 = r̄0(ρ, α+, ke+, n), (14)

speci�es the right limit (connected with the envelope)
of the area in which ∆β̄ is available in case r̄0 ≡ r̄0en−,
r̄0en− = r̄0en−(ρ, αen−, n) (see Eq. (5)) and α− ≡ −α+ ≡
−|αen−|. Equations (13) and (14) are equivalent to the
ones (2) and (3) with α+ and ke+, replacing α and k,
and Eq. (12) represents the one (6), respectively in it α−
stands for αen− (n = 1 for TE01 mode).

7. Iterative method for tracing the left limit

of the domain of phase shifter operation

7.1. Description of the method

First, values of the ratio ρch and of the o�-diagonal
tensor element |αch| are singled out and the relevant
one of the critical radius r̄comp

0cr is counted from for-
mula (4). Next, for an arbitrarily picked out nega-
tive numerical equivalent kch− of the imaginary part k
of the parameter a of the con�uent functions, the pos-

itive purely imaginary roots χ
(c)comp

kch
− ,n

(ρch) of Eq. (1) in

x0 (in z0) are determined (n = 1, 2, 3, . . .). Then, the

numbers, answering to αch
− , kch− and χ

(c)comp

kch
− ,n

(ρch) are

put in expressions (2), (3). After that kch− is changed
and the scheme is hammered away, until an interval of
values ∆kchc− = [kchc−,left, k

ch
c−,right], (kchc−,left < kchc−,right)

is speci�ed, such that r̄comp
0cr lies in the pertinent one

∆r̄comp
0c− = [r̄comp

0c−,left, r̄
comp
0c−,right], (r̄comp

0c−,left < r̄comp
0c−,right).

Then ∆kchc− is divided into mch parts and that of them is
considered for which the relevant interval for r̄comp

0c− con-
tains r̄comp

0cr . The procedure goes on, until it becomes
true: |r̄comp

0cr − r̄comp
0c− | < εch, εch� the prescribed ac-

curacy. The value of β̄comp
c− , corresponding to the last

iteration is taken as that, searched for. Afterwards, |αch|
is altered and what has been described is repeated. Fi-
nally, a new ρch is accepted and the calculations are done
again. The chosen (computed) quantities are marked by
a superscript �ch� (�comp�).

7.2. Numerical example

Let ρch = 0.1 and |αch| = 0.1. Accordingly, it is found
that: r̄comp

0cr = 3.96079 53460. Let now kch− = −0.1 be
an arbitrary chosen negative value of the parameter k.
On doing for it the relevant computations, it is obtained:

χ
(c)comp

kch
− ,n

(ρch) = 7.50329 93839, r̄comp
0c− = 8.43120 56878

and β̄comp
c− = 0.88994 38185. Due to the fact that r̄comp

0c− ̸=
r̄comp
0cr (r̄comp

0c− > r̄comp
0cr ), the process should continue. Tak-

ing kch− = −0.2, yields: χ
(c)comp

kch
− ,n

(ρch) = 7.14087 84197,

r̄comp
0c− = 14.79546 11718 and β̄comp

c− = 0.96527 95998,
respectively. In this case r̄comp

0c− is even larger than in
the previous one. Hence, the value of kc− sought is
smaller than the ones, already used. For kch− = −0.0024

Fig. 4. Domain of phase shifter operation of the azi-
muthally magnetized coaxial ferrite waveguide for nor-
mal TE01 mode, in case ρ = 0.1 for the intervals
r̄0 = ⟨0÷ 80⟩ and ∆β̄ = ⟨0÷ 0.30⟩.

Fig. 5. Domain of phase shifter operation of the azi-
muthally magnetized coaxial ferrite waveguide for nor-
mal TE01 mode in case ρ = 0.1 for the intervals r̄0 =
⟨0÷ 25⟩ and ∆β̄ = ⟨0÷ 0.30⟩.

and kch− = −0.0025 it is reckoned: χ
(c)comp

kch
− ,n

(ρch) =

7.87261 37226, r̄comp
0c− = 3.96069 20961, β̄comp

c− =

0.04770 44730 and χ
(c)comp

kch
− ,n

(ρch) = 7.87222 76858,

r̄comp
0c− = 3.96088 50996, β̄comp

c− = 0.04968 73015, respec-
tively. Thus, an interval ∆r̄comp

0c− has been found, con-

taining r̄comp
0cr , respectively ones for kch− and β̄comp

c− have
been determined, involving the values sought.

Let mch = 10 and the interval for kch− in question
be divided into 10 parts. Since r̄comp

0cr lies between the
values of r̄comp

0c− , answering to kch− = −0.00245 and
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kch− = −0.00246, these are admitted as left and right-
-hand sides of the subsequent interval to be treated.
The relevant numerical equivalents of r̄comp

0c− and β̄comp
c−

are accepted as �rst approximations to the quanti-
ties looked for (cf. Table I). In a similar manner, it
is ascertained that the following intervals for kch− to
be threshed out should be: [−0.002455,−0.002454],
[−0.0024546,−0.0024545], etc. Table I contains the
results of computations at the both limits of pertinent
intervals for the �rst 6 iterations in case ρch = 0.1 and

ρch = 0.5, assuming |αch| = 0.1. Data, corresponding to
the arbitrary change of kch− , are not included. Table II
yields the upshots of numerical investigation for the same
ρch and |αch| = 0.1 (0.2) 0.9. Besides, its �fth and second
columns represent the function ∆β̄cr = ∆β̄cr(ρ, r̄0, n) (cf.
Sect. 6.1) numerically for discrete values of parameters.
Using the outcomes of numerical study, this function is
plotted graphically in Figs. 4�7 by dashed green LEn1 �
lines in the intervals r̄0 = ⟨0 ÷ 80⟩ and ⟨0 ÷ 25⟩ for the
aforesaid numerical equivalents of ρ and n.

TABLE I

Numerical values of the quantities kch
c−; χ

(c)comp

kch
c−,1

(ρch), (c = 3); β̄comp
c− for normal TE01 mode in case |αch| = 0.1 and

mch = 10 as a function of the number of iteration N , assuming ρch = 0.1, r̄comp
0cr = 3.96079 53460 and ρch = 0.5,

r̄comp
0cr = 6.42536 43043.

N kch
c− χ

(c)comp

kch
c−,1

(ρch) r̄comp
0c− β̄comp

c− N kch
c− χ

(c)comp

kch
c−,1

(ρch) r̄comp
0c− β̄comp

c−

ρch = 0.1

1
�0.00246 7.87238 20987 3.96080 60098 0.04889 42400

4
�0.00245 451 7.87240 32920 3.96079 53512 0.04878 53850

�0.00245 7.87242 07023 3.96078 66307 0.04869 59600 �0.00245 450 7.87240 33306 3.96079 53318 0.04878 51867

2
�0.00245 5 7.87240 14005 3.96079 63006 0.04879 51007

5
�0.00245 4508 7.87240 32998 3.96079 53473 0.04878 53453

�0.00245 4 7.87240 52608 3.96079 43635 0.04877 52727 �0.00245 4507 7.87240 33036 3.96079 53454 0.04878 53255

3
�0.00245 46 7.87240 29446 3.96079 55256 0.04878 71695

6
�0.00245 45074 7.87240 33021 3.96079 53462 0.04878 53334

�0.00245 45 7.87240 33306 3.96079 53318 0.04878 51867 �0.00245 45073 7.87240 33025 3.96079 53460 0.04878 53314

ρch = 0.5

1
�0.00106 12.78344 66774 6.42536 70820 0.02108 89951

4
�0.00105 796 12.78345 21941 6.42536 43051 0.02104 84269

�0.00105 12.78347 37202 6.42535 35716 0.02089 01304 �0.00105 795 12.78345 22212 6.42536 42915 0.02104 82280

2
�0.00105 8 12.78345 20859 6.42536 43594 0.02104 92223

5
�0.00105 7960 12.78345 21941 6.42536 43051 0.02104 84269

�0.00105 7 12.78345 47902 6.42536 30019 0.02102 93359 �0.00105 7959 12.78345 21968 6.42536 43037 0.02104 84070

3
�0.00105 80 12.78345 20859 6.42536 43594 0.02104 92223

6
�0.00105 79595 12.78345 21955 6.42536 43044 0.02104 84169

�0.00105 79 12.78345 23564 6.42536 42235 0.02104 72337 �0.00105 79594 12.78345 21957 6.42536 43042 0.02104 84150

TABLE II

Numerical values of the quantities r̄comp
0c− , kcomp

c− , χ
(c)comp

k
comp
c− ,1

(ρch), β̄comp
c− for normal

TE01 mode for |αch| = 0.1(0.2)0.9 and ρch = 0.1 and ρch = 0.5, (c = 3).

|αch| r̄comp
0c− kcomp

c− χ
(c)comp

k
comp
c− ,1

(ρch) β̄comp
c−

ρch = 0.1

0.1 3.96079 53460 �0.00245 45073 7.87240 33024 0.04878 53316

0.3 4.13122 93324 �0.02232 73862 7.79599 19919 0.14044 57848
0.5 4.55060 73990 �0.06340 30242 7.64001 24956 0.21289 46115

0.7 5.51842 20491 �0.12870 14588 7.39759 54837 0.24646 83154

0.9 9.04114 01165 �0.22387 61940 7.05680 58873 0.19415 58038
ρch = 0.5

0.1 6.42536 43043 �0.00105 79595 12.78345 21956 0.02104 84160
0.3 6.70184 92920 �0.00953 89116 12.76053 75130 0.06054 13195

0.5 7.38218 15546 �0.02659 37468 12.71457 90959 0.09160 66057

0.7 8.95221 00874 �0.05241 21854 12.64531 53139 0.10576 29670

0.9 14.66690 75022 �0.08728 87917 12.55234 46762 0.08300 46218

7.3. Maximum value of the normalized di�erential
phase shift

Analyzing the numerical results obtained, it might be
concluded that ∆β̄cr is a smooth continuous convex func-
tion of |α| (of r̄0 ≡ r̄0cr), possessing a maximum which is
attained in both cases in the vicinity of point |α| = 0.7
(cf. Table II). Its exact location is found by means of an
iterative procedure, consisting in a successive computa-

tion of∆β̄cr for varying |α| around the latter. Performing
a number of iterations, the next is calculated for |αcomp|,
r̄comp
0c− , kcomp

c− , χ
(c)comp

kcomp
c− ,1

(ρch) and β̄comp
c− when ρch = 0.1

and 0.5, respectively: 0.709183, 5.58979 42553 16039,
�0.13235 98055 22100, 7.38421 88422 72688,
0.24655 08703 95035;
0.707148,9.04181 60967 85339,�0.05350 05006 62200,
12.64240 38742 22261, 0.10578 43737 58764.
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TABLE III

Numerical values of the quantities kch
e+; χ

(c)comp

kch
e+,1

(ρch), (c = 3); r̄comp
0e+ ; β̄comp

e+ for normal TE01 mode in case |αch| = 0.1

and mch = 10 as a function of the number of iteration N , assuming ρch = 0.1, r̄comp
0en− = 76.88630 and ρch = 0.5,

r̄comp
0en− = 302.14331.

N kch
e+ χ

(c)comp

kch
e+

,1
(ρch) r̄comp

0e+ β̄comp
e+ N kch

e+ χ
(c)comp

kch
e+

,1
(ρch) r̄comp

0e+ β̄comp
e+

ρch = 0.1

1
0.700 10.89669 40203 76.85644 21512 0.99245 88754

4
0.70021 0 10.89766 89980 76.88626 08155 0.99246 03860

0.701 10.90133 70267 76.99847 46765 0.99246 60570 0.70021 1 10.89767 36408 76.88640 28195 0.99246 03932

2
0.7002 10.89762 25698 76.88484 07807 0.99246 03141

5
0.70021 02 10.89766 99265 76.88628 92163 0.99246 03875

0.7003 10.89808 68543 76.89904 15721 0.99246 10331 0.70021 03 10.89767 03908 76.88630 34167 0.99246 03882

3
0.70021 10.89766 89980 76.88626 08155 0.99246 03860

6
0.70021 027 10.89767 02515 76.88629 91566 0.99246 03880

0.70022 10.89771 54262 76.88768 08602 0.99246 04580 0.70021 028 10.89767 02980 76.88630 05766 0.99246 03881

ρch = 0.5

1
1.6662 18.03345 54248 302.12310 36994 0.99453 97443

4
1.66628 39 18.03375 38863 302.14330 36706 0.99453 97893

1.6663 18.03381 11588 302.14717 99901 0.99453 97980 1.66628 40 18.03375 42412 302.14332 77316 0.99453 97894

2
1.66628 18.03374 00122 302.14236 46773 0.99453 97872

5
1.66628 392 18.03375 39577 302.14330 84893 0.99453 97893

1.66629 18.03377 55855 302.14477 23304 0.99453 97926 1.66628 393 18.03375 39959 302.14331 09409 0.99453 97893

3
1.66628 3 18.03375 06850 302.14308 69859 0.99453 97888

6
1.66628 3926 18.03375 39759 302.14330 98811 0.99453 97893

1.66628 4 18.03375 42415 302.14332 77380 0.99453 97894 1.66628 3927 18.03375 39841 302.14331 01992 0.99453 97893

Fig. 6. Domain of phase shifter operation of the azi-
muthally magnetized coaxial ferrite waveguide for nor-
mal TE01 mode in case ρ = 0.5, for the intervals
r̄0 = ⟨0÷ 80⟩ and ∆β̄ = ⟨0÷ 0.30⟩.

The maximum of the LEn1 � curve (the maximum
value of ∆β̄ which the relevant geometry might a�ord at
all) is marked in Figs. 4�7 by the points (1).

8. Iterative method for tracing the right limit

of the domain of phase shifter operation

8.1. Description of the method

As before, values of the parameters ρch and |αch|
are selected. Afterwards, the corresponding numeri-
cal equivalents of the normalized guide radius r̄comp

0en−
and phase constant β̄comp

en− are reckoned from formulae

(5) and (6). The L2(3, ρ
ch, 1) numbers are taken from

Table 3 in [19]. Then the iterative scheme, described in

Fig. 7. Domain of phase shifter operation of the azi-
muthally magnetized coaxial ferrite waveguide for nor-
mal TE01 mode in case ρ = 0.5, for the intervals
r̄0 = ⟨0÷ 80⟩ and ∆β̄ = ⟨0÷ 0.12⟩.

Sect. 7.1, is e�ectuated for positive values of parameter

kch+ to get χ
(c)

kcomp
+ ,n

(ρch), respectively r̄comp
0e+ and β̄comp

e+

looked for. The computations go on until the inequality
|r̄comp

0en−− r̄comp
0e+ | < εch becomes true. The quantity ∆β̄en−

is determined as a di�erence between β̄comp
en− and β̄comp

e+ .

8.2. Numerical example

Let like previously ρch = 0.1, |αch| = 0.1 and mch =
10. Formulae (5) and (6) with L2(3, ρ

ch, 1) = 7.65009
yield r̄comp

0en− = 76.88630 and β̄comp
en− = 0.99499. For

kch+ = 0.7 and kch+ = 0.71 (two arbitrary picked out

positive values of k) it is obtained: χ
(c)comp

kch
+ ,n

(ρch) =

10.89669 40203, r̄comp
0e+ = 76.85644 21512, β̄comp

e+ =



Phase Shifter Operation . . . 69

0.99245 88754, and χ
(c)comp

kch
+ ,n

(ρch) = 10.94315 29996,

r̄comp
0e+ = 78.28119 85959, β̄comp

e+ = 0.99252 93390, respec-
tively. Obviously, an interval of values for k is found such
that the relevant one for r̄comp

0e+ contains r̄comp
0en−. The ends

of subsequent subintervals for k and the corresponding
results for the quantities of interest obtained, following
the described procedure, are given in Table III. The same
presents also the similar data counted when ρch = 0.5.

The upshots for r̄comp
0en−, β̄

comp
en− , kcomp

e+ , χ
(c)comp

kcomp
e+ ,n

(ρch), β̄comp
e+

and ∆β̄en− in case ρch = 0.1 and 0.5, respectively (the
�rst numbers) and |αch| = 0.1 are: 0.1, 76.88630,
0.99499, 0.70021, 10.89767, 0.99246, 0.00253; 0.5,
302.14331, 0.99499, 1.66628, 18.03375, 0.99454,
0.00045.
The quantity r̄0en− has a minimum min r̄0en− =

2L2(3, ρ, 1) provided αmin = −1/
√
2 = −0.70711

and β̄en−,min = |αmin| [19]. The outcomes for r̄comp
0en−,

β̄comp
en− , kcomp

e+ , χ
(c)comp

kcomp
e+ ,n

(ρch), β̄comp
e+ , ∆β̄en−,min, respec-

tively, with εch = 10−5 at this point are: (i) if ρch =
0.1: 15.30018, 0.70711, 0.63093, 10.57762, 0.61686,
0.09025; (ii) and if ρch = 0.5: 60.12576, 0.70711,
1.63850, 17.93507, 0.69120, 0.01591. The accuracy
of L2(3, ρ, 1) (maximum �ve decimal places) [19] prede-
termines the one of the upshots. (The digits in a given
result, being identical with these in the �nal one, are
distinguished by bold face type.)
In above examples the numbers, relevant to ∆β̄en−

and r̄0en− yield the function ∆β̄en− = ∆β̄en−(ρ, r̄0, n)
(cf. Sect. 6.2) for discrete values of its parameters. The
based on the numerical study dotted green REn1 � lines
in Figs. 4�7, show it graphically for r̄0 = ⟨0 ÷ 80⟩ and
⟨0 ÷ 25⟩, and the both values of ρ considered, assuming
normal TE01 mode. The leftmost point of the REn1 �
curves is marked o� by notation (2).

9. Domain of phase shifter operation

The LEn1 � and the REn1 � lines in Figs. 4�7 por-
tray the limits of the domain of existence of ∆β̄ (rep-
resented by blue colour), linked with the cut-o� fre-
quencies and with the envelope of the β̄−(r̄0) � char-
acteristics [19], respectively. As seen, for speci�c r̄0 ∈
[χ

(c)
0,n/2, 2L2(c, ρ, n)], ∆β̄ is produced for all |α| ∈ [0, αcr],

αcr =
√

1− [χ
(c)
0,n(ρ)/(2r̄0)]

2 and its value varies from

the r̄0 � axis to the LEn1 � line. Provided r̄0 ∈
[2L2(c, ρ, n),+∞], there are two zones below and above
the REn1 � curve in which ∆β̄ is observed, sepa-
rated by one where it does not exist. In the lower
(upper) zone phase shift is obtained for |α| ∈ [0, α2]

(|α| ∈ [α1, αcr]), α1,2 = 0.5
√
1± (1− 4L2(c, ρ, n)/r̄0)2.

No ∆β̄ is available, if |α| ∈ [α2, α1]. The abscissa
min r̄0en− = 2L2(c, ρ, n) of point (2) delimits both in-
tervals for r̄0. Moreover, the growth of central conduc-
tor thickness lessens the maxima of LEn1 � lines (the
maximum value that ∆β̄ may attain, decreases). Simul-

taneously, the REn1 � curve moves faster to the side of
higher frequencies and the domain studied expands.

10. Conclusion

The criteria under which the azimuthally magnetized
coaxial ferrite waveguide operates as a phaser shifter for
normal TE01 mode, named as a physical, a mathematical
and a functional one, are obtained. The cut-o� frequency
points and the peculiar envelope lines in the phase picture
of con�guration are used to formulate the �rst of them.
The second condition connects the parameters of geome-
try with de�nite roots of its characteristic equation, pre-
sented by complex con�uent hypergeometric functions
and with the linked with them L2(c, ρ, n) numbers. The
third one yields the di�erential phase shift a�orded by
the transmission line at cut-o� and at the envelopes as
a function of its parameters. The same is evaluated by
iterative techniques, using the roots of the equation re-
ferred to. Its graphical image determines the limits of the
domain of phase shifter operation of the waveguide. The
potentiality of the latter as an element of a special kind
of electronically scanned antenna array is also revealed.
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