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We develop the concept of scattering matrix and we use it to perform stable numerical calculations of resonant
tunneling of electrons through a multiple potential barrier in a semiconductor heterostructure. Electrons move in
two external nonperturbative electric �elds: constant and oscillating in time. We apply our algorithm for di�erent
strengths and spatial con�gurations of the �elds.
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1. Introduction

The aim of this paper is to present a numerically stable
algorithm for investigations of nonrelativistic quantum
processes occurring in arbitrary space-dependent scalar
potential and a time- and space-dependent vector poten-
tial. Vector potential is periodic in time and describes a
laser �eld. Such conditions are met for example in semi-
conductor nanostructures [1�8] (like quantum wires or
wells), photoemission from a metal tip [9], carbon nano-
tubes [10, 11] or in surface physics [12�16]. To make our
presentation as clear as possible we shall restrict ourselves
to the one-space-dimensional case, although extension of
this algorithm to two and three-space dimensional sys-
tems, also with magnetic �eld accounted for, is possible
(see, e.g. [17]). We shall apply our method to investi-
gation of the tunneling process and its dependence on
relative phases of multichromatic laser pulses (multicolor
processes have been considered for instance in [16, 18]).
Multiple barrier, �eld-assisted resonant tunneling is an

interesting problem because it provides an insight into
the physics of nanostructure quantum systems and be-
cause it is a fundamental e�ect to use in a wide variety
of technological applications. As concerns the latter, it is
enough to mention all sorts of detectors and generators of
microwave radiation based on double barrier structures
with external electric �eld added; for more examples, see
[19�24].
Here we analyze resonant tunneling through semicon-

ductor structures in the presence of both oscillating and
constant in time external electric �elds. The �elds are
supposed to be nonperturbative. We assume that single-
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-particle states of electrons in heterostructures are well
approximated by the so-called envelope function [21, 24].
E�ects of sharp interfaces between di�erent semiconduc-
tors are accounted for by boundary conditions satis�ed
by the envelope wave function, i.e., by the continuity of
both the envelope wave function and the probability cur-
rent at the interfaces (see, for example, [25�32]). Scalar
potential V (x) is assumed to be constant in time but it
can be of any shape. The same conditions hold for space-
-dependent e�ective mass m(x). Vector potential A(x, t)
describes a laser �eld and thus it is space-dependent and
oscillates in time. In our approach to numerical compu-
tations, one-dimensional space is sliced into small inter-
vals wherem(x), V (x) and A(x, t) are space-independent.
For arbitrary space-dependent functions m(x), V (x) and
A(x, t) such a procedure is justi�ed, provided that the
widths of these intervals are su�ciently small.
We develop below a general numerical scheme which

permits to evaluate transition and re�ection probabilities
for electrons moving in the system described above.
This paper is organized as follows. In Sect. 2 the most

general solution of the Schrödinger equation is intro-
duced. The transfer-matrix method and matching con-
ditions are analyzed in Sect. 3, whereas re�ection and
transition probabilities are introduced in Sect. 4. These
probabilities must sum up to 1, which puts a very strong
check for the accuracy of numerical calculations. The
most important part of this paper, i.e. the concept of
the scattering-matrix method, is discussed in the next
section, where it is shown why the scattering-matrix al-
gorithm has to be introduced, instead of a much simpler
transfer-matrix algorithm. Numerical illustrations of the
applicability of this algorithm are presented in Sects. 6
and 7, and are followed by short conclusions.

(53)
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2. Solution of the Schrödinger equation

Let us start with one-dimensional Schrödinger equa-
tion of the form [21, 26],

i∂tψ(x, t) =

[
1

2

(
1

i
∂x − eA(x, t)

)
× 1

m(x)

(
1

i
∂x − eA(x, t)

)
+ V (x)

]
ψ(x, t). (1)

Space-dependent mass m(x), scalar potential V (x) and
vector potential A(x, t) are spatially constant in �nite
intervals. Their values in any interval (xi−1, xi) will be
denoted as mi, Vi and Ai(t). An example of such a struc-
ture is presented in Fig. 1. We require also that the func-

Fig. 1. Generic shapes of space-dependent superlattice
potential V (x), e�ective mass m(x), and oscillating in
time laser �eld A(x, t).

tion A(x, t) is periodic in time, that is

A(x, t+ T ) = A(x, t), (2)

where T = 2π/ω and ω is the frequency of the oscillat-
ing in time electric �eld. De�ning in a standard way the
probability density ρ(x, t),

ρ(x, t) = |ψ(x, t)|2, (3)

and the probability current j(x, t),

j(x, t) =
1

2
ψ∗(x, t)

1

m(x)

(
1

i
∂x − eA(x, t)

)
ψ(x, t)

+
1

2
ψ(x, t)

1

m(x)

[(
1

i
∂x − eA(x, t)

)
ψ(x, t)

]∗
, (4)

we show using Eq. (1) that the conservation of proba-
bility condition is satis�ed. Indeed, assuming the above
de�nitions, we get the continuity equation,

∂tρ(x, t) + ∂xj(x, t) = 0. (5)

Space dependence of mass in Eq. (1) forces one to im-
pose non-standard continuity conditions on any solution
of this equation. It is now the wave function ψ(x, t) and
the quantity

1

m(x)

(
1

i
∂x − eA(x, t)

)
ψ(x, t) (6)

that have to be continuous at points of discontinuity of
mass m(x) and both potentials V (x) and A(x, t) [26�29].
Before passing to a general solution ψ(x, t) of Eq. (1) in
any given interval (xi−1, xi), which we shall denote as
ψi(x, t), let us note that due to time periodicity of the
Hamiltonian, ψi(x, t) can be chosen such that the Flo-
quet condition,

ψi(x, t+ T ) = e− iETψi(x, t), (7)

is satis�ed, where E is the so-called quasi-energy. A gen-
eral solution ψi(x, t) of Eq. (1) in any interval (xi−1, xi)
takes then the following form [30, 31]:

ψi(x, t) =
∞∑

M=−∞

exp(− i(E +Mω)t)

×
∑
σ=±

∞∑
N=−∞

Cσ
iNBM−N (σpiN ) exp(iσpiNx), (8)

where Cσ
iN are arbitrary complex numbers to be deter-

mined and

piN =
√

2mi(E +Nω − Vi − Ui), (9)

with Ui = e2⟨A2
i (t)⟩/2mi being the ponderomotive en-

ergy, where ⟨A2
i (t)⟩ means the time-average of A2

i (t) over
the laser-�eld oscillation. Components for which piN are
purely imaginary are called closed channels. These chan-
nels are not observed for a particle in initial or �nal
states, but they have to be taken into account in order to
satisfy the unitary condition of the time evolution. In a
general case, the BM−N (σpiN ) functions are components
of the following Fourier expansion:

exp(iΦσ
iN (t)) =

∞∑
M=−∞

exp(− iMωt)BM−N (σpiN ),

(10)
provided that the vector potential A(x, t) is periodic in
time. Functions Φσ

iN (t) are de�ned as follows:

Φσ
iN (t) =

∫ t

0

[
σe

mi
Ai(t)piN

− e2

2mi

(
A2

i (t)− ⟨A2
i (t)⟩

)]
dt. (11)

It is easily seen from the above equation that the
BM−N (σpiN ) functions depend on the form of the vector
potential A(x, t), that is on the laser �eld applied.

3. Matching conditions and transfer matrix

Continuity conditions discussed above and applied to a
general solution (8) of the Schrödinger equation (1) lead
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to an in�nite chain of equations connecting constants Cσ
iN

in the neighboring domains. These matching conditions
can be written in the matrix form,

B(i− 1, xi−1)Ci−1 = B(i, xi−1)Ci, (12)

where C±
iN = [C±

i ]N are the components of the columns
C±

i . The matrices B(i, x) and Ci are de�ned as follows:

B(i, x) =

(
B+(i, x) B−(i, x)

B′+(i, x) B′−(i, x)

)
, Ci =

(
C+

i

C−
i

)
.

(13)
The elements of B(i, x) can be computed in the follow-
ing way.
For an arbitrary function A(x, t), periodic in time with

the period T ,

A(x, t) = A(x, t+ T ), (14)

we have

A(x, t) =

∞∑
n=−∞

bn(x) exp(− inωt), (15)

where ω = 2π/T . In the interval (xi−1, xi) coe�cients
bn(x) assume constant values, which we shall denote as
bi,n. Using the condition of the continuity of the wave
function ψi(x, t) at the point xi−1, we compute the ele-
ments of the matrices B+ and B−,

B±(i, x)M,N = BM−N (±pi,N ) exp(± ipi,Nx). (16)

On the other hand, elements of the B′ matrix can be
evaluated by substituting a general solution (8) to the
expression (6) and applying the continuity condition to
it at xi−1. After some algebraic manipulations we obtain
the following equation:

1

mi−1

( ∞∑
M=−∞

exp(− i(E +Mω)t)

×
∑
σ=±1

∞∑
N=−∞

Cσ
i−1,NBM−N (σpi−1,N )σpi−1,N

× exp(iσpi−1,Nxi−1)−
∞∑

M=−∞
exp(− i(E +Mω)t)

×
∑
σ=±1

∞∑
N,n=−∞

ebi−1,nC
σ
i−1,NBM−N−n(σpi−1,N )

× exp(iσpi−1,Nxi−1)

)

=
1

mi

( ∞∑
M=−∞

exp(− i(E +Mω)t)

×
∑
σ=±1

∞∑
N=−∞

Cσ
i,NBM−N (σpi,N )σpi,N

× exp(iσpi,Nxi−1)−
∞∑

M=−∞
exp(− i(E +Mω)t)

×
∑
σ=±1

∞∑
N,n=−∞

ebi,nC
σ
i,NBM−N−n(σpi,N )

× exp(iσpi,Nxi−1)

)
. (17)

Suspending the summation over M on both sides of the
above equation, we �nally get the expression for the B′-
-matrices,

B′±(i, x)M,N = ± 1

mi
BM−N (pi,N )pi,N exp(± ipi,Nx)

− 1

mi

∞∑
n=−∞

ebi,nBM−N−n(±pi,N )

× exp(±ipi,Nx). (18)

In this way we obtain a set of equations for vectors Ci,

Ci = BiCi−1, (19)
where

Bi = [B(i, xi−1)]
−1
B(i− 1, xi−1). (20)

These relations allow to connect a solution in a given do-
main xi−1 < x < xi with an analogous solution in any
other domain xj−1 < x < xj ,

Cj = BjBj−1, . . . , Bi+1Ci = TjiCi, (21)

where Tji is the so-called transfer matrix [22, 28, 30,
32, 33].

4. Re�ection and transition probabilities

It is clear now that on the basis of Eq. (21) we can
connect solutions in the boundary domains (−∞, x0) and
(xL−1,∞). Values of mass m(x), scalar potential V (x)
and vector potential A(x, t) in these domains will be de-
noted as m0, V0, A0(t) and mL, VL, AL(t), respectively.
We can then write down solutions of (1) for each of these
domains. These solutions represent incident (ψinc), re-
�ected (ψref) and transmitted (ψtr) waves, and take the
following form:

ψinc(x, t) =
∞∑

M=−∞
exp(− iEt) exp(− iMωt)

×BM (p0) exp(ip0x), (22)

ψref(x, t) =
∞∑

N,M=−∞

C−
0,N exp(− iEt) exp(− iMωt)

×BM−N (−pN ) exp(− ipNx), (23)

ψtr(x, t) =
∞∑

M=−∞

C+
L,N exp(− iEt) exp(− iMωt)

×BM−N (qN ) exp(iqNx), (24)

where

pN =
√

2m0(E +Nω − V0 − U0),
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qN =
√
2mL(E +Nω − VL − UL). (25)

Constants C−
0,N and C+

L,N will be denoted from now on
as RN and TN , respectively. Using continuity conditions
for functions de�ned above, we get the probability conser-
vation equation for re�ection and transition amplitudes,
RN and TN ,∑

N>Nref

pN
p0

|RN |2 +
∑

N>Ntr

m0qN
mLp0

|TN |2 = 1, (26)

where summations are over such N for which pN and qN
are real, i.e., over the open channels. This equation per-
mits us to interpret

PR(N) =
pN
p0

|RN |2 (27)

and

PT (N) =
m0qN
mLp0

|TN |2 (28)

as re�ection and transition probabilities for a tunneling
process in which absorption (N > 0) or emission (N < 0)
of energy Nω by electrons occurred [30, 29]. In case of
a monochromatic laser �eld this process can be inter-
preted as absorption or emission of N photons from the
laser �eld.

The unitary condition (26) can be also interpreted as
the conservation of electric charge. To this end, let us
de�ne the quantities proportional to the density of elec-
tric currents,

Jinc =
p0
m0

, (29)

Jref =
∑

N>Nref

pN
m0

|RN |2, (30)

Jtr =
∑

N>Ntr

qN
mL

|TN |2. (31)

Then Eq. (26) adopts the form of the �rst Kirchho� law,

Jinc = Jref + Jtr. (32)

Using (21) we can calculate constants C−
0,N = RN and

C+
L,N = TN appearing in Eqs. (22)�(24). Indeed, since

CL = T C0, (33)

where transfer matrix T = TL0, and because T , C0 and
CL adopt the following block forms:

T =

(
T ++ T +−

T −+ T −−

)
,

C0 =

(
C+

0

R

)
, CL =

(
T

0

)
, (34)

we arrive at
T = T ++C+

0 + T +−R, 0 = T −+C+
0 + T −−R, (35)

where R and T denote the columns of RN and TN , and
[C+

0 ]N = δ0,N . Thus, after some algebraic manipulations,
we have,

R = −(T −−)−1T −+C+
0 .

T =
(
T ++ − T +−(T −−)−1T −+

)
C+

0 , (36)

which allows us to determine the quantities RN and TN
for a given transfer matrix T . For open channels, these
quantities are the amplitudes of re�ection (RN ) and tran-
sition (TN ) probabilities, from which one can compute
re�ection and transition probabilities using Eqs. (27)
and (28). In all our numerical illustrations, condi-
tion (26) is satis�ed with an error smaller than 10−14.

5. The scattering matrix

We note from Eqs. (16) and (18) that each of the Bi

matrices that constitute the transfer matrix Tji contain
elements exp(± ipi,Nxi) that depend on the xi coordi-
nates at which the discontinuities appear. For closed
channels, that is when the pi,N momenta are purely imag-
inary, these numbers are real and may assume arbitrary
values, very large or very small, depending again on the
xi coordinates. Number of the Bi matrices is equal to
the number of discontinuity points, that is it depends on
how we divide the space into short intervals in order to
make our potential tractable by our algorithm. It may
therefore turn out that in order to compute the transfer
matrix Tji, we have to multiply a large number of the Bi

matrices, each containing both very small and very large
numbers. It is clear that such a procedure is numerically
unstable. We have to �nd a way to modify our method
of calculations in order to compute the elements of each
Bi matrix at the same point x = 0 independently of
where the �real� xi is. This would eliminate �dangerous�
exp(± ipi,Nxi) elements (turning them to 1), however at
the cost of appearing somewhere else. We shall see later
that these �left-overs� of the shift into x = 0 appear only
as di�erences xi+1 − xi and therefore do not cause any
harmful side-e�ects. We shall see now that such a mod-
i�cation is possible and the price we pay for it is worth
the e�ort.
It follows from Eq. (21) that in the neighboring do-

mains, (xi−2, xi−1) and (xi−1, xi), we have,

Ci = Ti,i−1Ci−1. (37)

Although the elements of the transfer matrix Ti,i−1

have been computed from the continuity conditions at
point xi−1, one can compute them at any other point,
for example x = 0. To this end, let us notice what fol-
lows from the form of the solution (8). Translation of the
system by a certain distance δ along the x-axis causes
only multiplication of each member of the sum over N
in (8) by a constant exp(iσpiNδ). These constants can
be included in coe�cients Cσ

iN . In this way we get a new
set of constants which we shall denote as C̃σ

iN ,

C̃σ
iN = exp(iσpiNδ)C

σ
iN . (38)

We shall interpret these constants as coe�cients in so-
lution (8), given by the continuity conditions at point
xi−1 − δ. Equation (38) written in the matrix form be-
comes
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C̃i = Pi(δ)Ci (39)
where

Pi(δ) =

(
P+
i (δ) 0

0 P−
i (δ)

)
, (40)

and

Ci =

(
C+

i

C−
i

)
, C̃i =

(
C̃+

i

C̃−
i

)
. (41)

In the equation above Pσ
i (δ) is a diagonal matrix,

[Pσ
i (δ)]NN ′ = δNN ′ exp(iσpiNδ), (42)

whereas C±
i and C̃±

i are the columns of the constants
C±

iN and C̃±
iN , respectively, that is [C±

i ]N = C±
iN and

[C̃±
i ]N = C±

iN . It follows from the form of the matrix
Pi(δ) that the following relations are satis�ed:

P−1
i (δ) = Pi(−δ), (43)

Pi(δ1)Pi(δ2) = Pi(δ1 + δ2). (44)

Let us notice also that translation of the system de-
�ned above modi�es the transfer matrix Ti,i−1. We have

P−1
i C̃i = Ci = Ti,i−1Ci−1

= Ti,i−1P−1
i−1(δ)Pi−1(δ)Ci−1, (45)

thus

C̃i = Pi(δ)Ti,i−1P−1
i−1(δ)C̃i−1, (46)

and we can write it down as

C̃i = T̃i,i−1C̃i−1, (47)
where

T̃i,i−1 = Pi(δ)Ti,i−1P−1
i−1(δ). (48)

Matrix elements denoted with the tilde symbol refer to
the translated system. Using the method de�ned above
and the relation (21), we can connect now the solu-
tion in the domain (−∞, x0) with the solution in any
other domain (xi−1, xi). In this way the elements of the
transfer matrix, which have been computed until now at
the points of discontinuity x0 . . . xi−1, are computed now
each time at the same point x = 0. Let us illustrate this
method for a special case of i = 3:

C3 = T3,2T2,1T1,0C1 = P−1
3 (x2)T 0

3,2P2(x2)P−1
2 (x1)

×T 0
2,1P1(x1)P−1

1 (x0)T 0
1,0P0(x0)C0

= P−1
3 (x2)T 0

3,2P2(x2 − x1)

×T 0
2,1P1(x1 − x0)T 0

1,0P0(x0)C0. (49)

Equation (49) connects constants C0 and C3 using the
matrices T 0

j,j−1 all computed at x = 0 independently of j,
and diagonal matrices Pj(δj), given by the relations (40)
and (42), where δj = xj − xj−1. Edge matrices P0(x0)

and P−1
3 (x2) in Eq. (49) can be omitted while computing

the transmission and re�ection probability amplitudes
since their only role is to multiply the amplitudes by
phase quotients which disappear while computing the
probabilities. Although these matrices lead to signi�-
cant modi�cations of the closed channels in the domains

of x < x0 and x > x3 in this particular case, these chan-
nels do not in�uence the re�ection and transition ampli-
tudes. Transmission and re�ection probabilities can thus
be computed using a modi�ed transfer matrix,

T 0
3,0 = T 0

3,2P2(x2 − x1)T 0
2,1P1(x1 − x0)T 0

1,0. (50)

The matrices T 0
i,i−1 are equal to the matrices Bi in

Eq. (20) calculated however for xi−1 = 0. This
fact speeds up numerical calculations since now matrix
B(i, x = 0) in Eq. (20) have to be inverted only once.
Further on we shall omit the superscript 0 in T and the
tilde over C in order to simplify notation. Diagrammatic
representation of the equation above is shown in Fig. 2.

Fig. 2. Diagrammatic representation of Eq. (50). Cir-
cles represent points of discontinuity {xj} and matri-
ces {T 0

j+1,j}, whereas lines represent �free-propagators�
{Pj+1(xj+1−xj)}. It is important to notice that all ma-
trices {T 0

j+1,j} are calculated at x = 0, which prevents
the development of numerical over�ows.

The method presented above is still numerically unsta-
ble. The reason for this instability lies in the existence of
large numerical values of elements of the P−

i (δ) matrix
for imaginary momenta piN . In other words, for

Ci =

(
C+

i

C−
i

)
= Ti,i−1Ci−1

=

(
T ++
i,i−1 T +−

i,i−1

T −+
i,i−1 T −−

i,i−1

)(
C+

i−1

C−
i−1

)
, (51)

the source of numerical instabilities are matrix elements
T −−
i,i−1 that contain large numbers. There is however a

chance for improving the stability, if only its reverse will
be used, (T −−

i,i−1)
−1. It appears that it is possible pro-

vided that in our numerical algorithm only the so-called
scattering matrix will be applied. For this reason we will
show below how to compute the scattering matrix, Sj,i,
using only elements of the transfer matrix, Tj,i. For the
transfer matrix Tj,i we have,

Tj,iCi = Cj =

(
C+

j

C−
j

)
=

(
T ++
j,i T +−

j,i

T −+
j,i T −−

j,i

)(
C+

i

C−
i

)
.

(52)Thus,

C+
j = T ++

j,i C+
i + T +−

j,i C−
i ,

C−
j = T −+

j,i C+
i + T −−

j,i C−
i . (53)

On the basis of (53) we now want to compute the el-
ements of the Sj,i matrix. This matrix is supposed to
connect the coe�cients C±

i and C±
j in the following way

(for the graphical illustration, see Fig. 3),
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C−

i

C+
j

)
=

(
S++
j,i S+−

j,i

S−+
j,i S−−

j,i

)(
C+

i

C−
j

)
. (54)

Using the set of linear Eqs. (53), we easily compute the
coe�cients C−

i and C+
j on the left-hand side of Eq. (54),

as functions of the coe�cients C−
j and C+

i . We get then
the following relations:

C−
i = (T −−

j,i )−1(C−
j − T −+

j,i C+
i ),

C+
j =

(
T ++
j,i − T +−

j,i (T −−
j,i )−1T −+

j,i

)
C+

i

+ T +−
j,i (T −−

j,i )−1C−
j . (55)

Finally we compute the elements of the matrix Sj,i,

S++
j,i = −(T −−

j,i )−1T −+
j,i ,

S+−
j,i = (T −−

j,i )−1,

S−+
j,i =

(
T ++
j,i − T +−

j,i (T −−
j,i )−1T −+

j,i

)
,

S−−
j,i = T +−

j,i (T −−
j,i )−1. (56)

As expected, the matrix Sj,i contains only numerically
stable elements (T −−

j,i )−1.

Fig. 3. Schematic representation of the idea of the
transfer matrix and the scattering matrix. For the
transfer matrix the incoming channels are C+

i and C−
i ,

and the outgoing channels are C+
j and C−

j . For the
scattering matrix C+

i and C−
j are the incoming chan-

nels with the remaining two considered as the outgoing
ones.

It follows from Eq. (21) that the transfer matrix Tj,i
can be written as the product of two transfer matrices,
Tj,k and Tk,i (i < k < j),

Tj,i = Tj,kTk,i, (57)

where matrices Tj,k and Tk,i are de�ned as follows:

Ck = Tk,iCi,

Cj = Tj,kCk. (58)

Applying the method presented above, for each of the
transfer matrices Tj,k and Tk,i we can construct a scat-
tering matrix, Sj,k and Sk,i, respectively. Elements of
the scattering matrix Sj,i can be computed using only
elements of the matrices Sj,k and Sk,i. Using the nota-
tion above, we obtain the following expressions for the
elements of the Sj,i matrix:

S++
j,i = S++

k,i + S+−
k,i (1− S++

j,k S−−
k,i )

−1S++
j,k S−+

k,i ,

S+−
j,i = S+−

k,i (1− S++
j,k S−−

k,i )
−1S+−

j,k ,

S−+
j,i = S−+

j,k (1− S++
j,k S−−

k,i )
−1S−+

k,i ,

S−−
j,i = S−−

j,k + S−+
j,k S−−

k,i (1− S++
j,k S−−

k,i )
−1S+−

j,k . (59)

It is clear from the above that the Sj,i matrix is not
merely a product of two matrices Sj,k and Sk,i, but rather
a complicated nonlinear composition of them. It is im-
portant however to note that despite its evident complex-
ity, such a construction of the scattering matrix is numer-
ically stable, as opposed to the transfer matrix method
which fails if a system with a large number of discon-
tinuity points xi is considered. Stability of such an al-
gorithm has been proven in our numerical investigations
by checking that the condition (26) is satis�ed with an
error smaller than 10−14. Such an accuracy can never be
achieved for systems with a large number of discontinuity
points if the transfer matrix is applied.

6. Resonant tunneling

We shall consider now the tunneling phenomenon
through a semiconductor heterostructure presented in
Fig. 4. In the beginning, let us assume that electrons
interact only with a constant electric �eld. Hence, the
time-independent potential is of the form V (x) + Fx,
in which V (x) represents the semiconductor heterostruc-
ture potential (Fig. 4) and F is the electric-�eld strength.
The plot of this potential is presented in Fig. 5, where
a = 40 Å, b = 20 Å, and F = −0.23 × 10−4 (in atomic
units). Applying the theory developed above, we calcu-
lated re�ection and transmission probabilities (see Fig. 6)
discretizing the potential with 15, 141, and 281 points,
as indicated in one of the frames. We observe that, in
order to get convergence, one has to introduce at least
one hundred discontinuity points. There is no noticeable
di�erence between the results obtained for 141 and 281
such points.

Fig. 4. Tunneling process considered in this paper. Pa-
rameters for the triple barrier are: V0 = 237 meV,
and the e�ective masses mGaAs = 0.0667me and
mGaxAl1−xAs = 0.0918me, where me is the electron rest
mass. The widths of the barriers b and wells a can
change.

Next, let us analyze transmission of electrons through
the triple barrier of Fig. 4 with a = 70 Å and b = 20 Å
and with the 221 discretization points. Now we apply a
constant electric �eld and the monochromatic laser �eld



Resonant Tunneling Controlled by Laser . . . 59

Fig. 5. Plot of the potential V (x) + Fx for a = 40 Å,
b = 20 Å, and F = −0.23 × 10−4 (in atomic units).
Other parameters are the same as in Fig. 4.

Fig. 6. Transmission probabilities for the potential
shown in Fig. 5. Numbers in the inset frame (represent-
ing enlarged part of the main frame) indicate the num-
ber of equally spaced discontinuity points introduced in
our numerical algorithm. We see that 15 points do not
give correct results and that the convergence is reached
with more than 100 points.

of frequency ω = 70 meV and intensity such that its pon-
deromotive energy divided by the laser photon energy
equals 10−4. Without external �elds, the resonant ener-
gies are grouped in doublets in which the lower-energy
resonance corresponds to the antisymmetric resonance
state, and the upper-energy resonance to the symmet-
ric one. With the laser �eld switched on, this structure
does not change very much provided that the frequency
is o�-resonance with respect to the already existing reso-
nance states of the triple barrier, and the intensity is not
too large, as it is presented in Figs. 7 and 8. The pattern
changes signi�cantly if a constant electric �eld is applied.
We observe that with an increasing strength of the elec-
tric �eld the low-energy transmission resonances from a
given doublet gradually disappear and we are left with
a single transmission resonance, which for even stronger
electric �elds also dies out. This means that by proper
tuning the strength of a constant electric �eld one can se-
lectively transmit electrons of some particular energies.

Fig. 7. Transmission probabilities for semiconductor
triple barrier with a = 70 Å, b = 20 Å. Intensity
of the laser �eld is such that the ratio of ponderomo-
tive energy to photon energy is Up/ω = 10−4 with
ω = 70 meV and we have three electric-�eld strengths
(in atomic units), as indicated in the �gure. As ex-
pected, transition probability distributions for ±F [blue
(dash-dash) and red (dash-dot) lines] are shifted in en-
ergy by |F |(3b+2a). Computations were performed for
221 discretization points.

Fig. 8. Color map of the total transmission probability
in the plane of the incident electron energy E and the
electric-�eld strength F . As expected, for the vanishing
electric �eld, resonances in the considered in Fig. 7 triple
barrier structure show up in doublets. However, for suf-
�ciently strong electric �eld the lower-energy resonance
from a doublet disappears.

7. Phase control of tunneling

Special features of barrier problems stem from the in-
teraction of waves re�ected from or transmitted through
potential jumps. When the interference of re�ected waves
is in phase, transmission becomes minimal. But when the
interference of re�ected waves is out of phase (i.e., it is
destructive) the incident wave resonantly penetrates ei-
ther by tunneling through or passing above the barrier
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structure. If the process occurs in a monochromatic laser
�eld the destructive or constructive interferences between
re�ected and transmitted waves are present also for dif-
ferent Fourier components of the electron wave function.
This leads for example to opening or closing gaps in the
band structure [1�5, 31] or formation of multiple-plateau
structures in the high-order harmonic spectrum [34, 35].
It gets even more complicated if multichromatic laser
�elds or short laser pulses are applied. In the �rst case
the interference discussed above can be controlled by rel-
ative phases of harmonics present in the multichromatic
�elds, whereas in the second case the resonance trans-
mission can be modi�ed by the carrier-envelope phase.

Fig. 9. Total transmission probabilities for the triple
barrier structure presented in Fig. 4 with a = 70 Å
and b = 20 Å, and for the bichromatic �eld [Eq. (60)]
with ω = 70 meV. The continuous (blue) line is for φ =
0, dash-dash (red) line for φ = π/2, whereas dash-dot
(black) line for φ = π. Frames correspond to di�erent
laser �eld intensities characterized by the dimensionless
parameter ξ = |e|E0(x)/(2

√
~meω3) (me is the electron

rest mass and E0(x) is considered to be constant in the
whole space): (a) ξ = 0.1, (b) ξ = 0.5, (c) ξ = 1, and
(d) ξ = 2.

As an example let us consider a bichromatic laser �eld.
Let the electric �eld be of the form

E(x, t) = E0(x)[sin(ωt)− sin(2ωt+ φ)], (60)

where E0(x) is in general a space-dependent amplitude of
the laser �eld. In Figs. 9 and 10 the laser-modi�ed total
transmission probabilities through a triple-barrier struc-
ture are presented for three di�erent relative phases φ.
Figure 9 corresponds to the situation in which the laser
�eld acts in the whole space, whereas Fig. 10 illustrates
the action of the laser �eld concentrated within the struc-
ture, hence incident, re�ected and transmitted electrons
are free. Apart from a signi�cant dependence of these
probabilities on the relative phase we observe also that
in the second case and for higher intensities considered
the transmission probabilities are smaller. It is because
the electrons have to traverse an extra �potential barrier�
created by the ponderomotive energy of a laser �eld in

Fig. 10. The same as in Fig. 9, but with space-
-dependent intensity of a laser �eld. Now, E0(x) = E0

within the triple barrier structure, E0(x) = E0/2 within
the edge barriers and 0 outside. The electric �eld
strength E0 is determined by a dimensionless param-
eter ξ = |e|E0/(2

√
~meω3), with the same numerical

values as in Fig. 9.

order to transmit through barriers. This �nding opens
up a possibility to create tunneling barrier structures by
laser �elds modulated in space. This can be investigated
numerically by applying the algorithm developed in this
paper.
As a second example of the phase control let us con-

sider transmission of electrons through a triple barrier
structure in the presence of both a constant electric �eld
and a train of very short laser pulses. It is well-known
from atomic and molecular physics that the ionization
process can be signi�cantly modi�ed by the so-called
carrier-envelope phase if a single pulse contains only few
oscillations. In order to investigate this phenomenon
for electron transmission let us assume that the train
of pulses is built from a single pulse (de�ned for times
0 6 t 6 Tp) of the form

E(x, t) = E0(x)f(t) sin(ωt+ φ)−∆L, (61)

where the envelope function f(t) equals

f(t) = exp

(
−
(
t− Tp/2

σp

)2
)
sin2

(
πt

Tp

)
, (62)

and the constant in time ∆L is chosen such that∫ Tp

0

E(x, t)dt = 0. (63)

The carrier-envelope phase φ can change from 0 to 2π.
In Fig. 11 we present transmission probabilities for the

electrons impinging from the right on the triple barrier
structure shown in Fig. 5 (however, with di�erent val-
ues for a and F ). Without the action of the laser pulse
the transmission is forbidden for energies smaller than
approximately 100 meV, whereas for larger energies elec-
trons can tunnel resonantly. The presence of the laser
�eld modi�es these conditions and they get similar to
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Fig. 11. Total transmission probabilities for the triple
barrier structure presented in Fig. 4 with a = 70 Å,
b = 20 Å, and V0 = 237 meV. The train of laser pulses
[Eqs. (61) and (62)] with ω = 70 meV, Tp = 26π/ω
and σp = Tp/140 (one-cycle pulse) is de�ned by the
space-dependent electric �eld such that E0(x) = E0

within the triple barrier structure, E0(x) = E0/2 within
the edge barriers and 0 outside. The laser �eld in-
tensity is characterized by the dimensionless parameter
ξ = |e|E0/(2

√
~meω3) (me is the electron rest mass),

whereas the constant electric �eld strength F is deter-
mined by the parameter η = |e|F (3b + 2a)/V0. In this
illustration ξ = 0.2 and η = 0.1. The continuous (blue)
line is for φ = π/2, dash�dash (red) line for φ = π/4,
whereas dash�dot (black) line for φ = 0.

those met in the photoemission from solid surfaces or
the ionization of atoms or molecules. For the latter it is
well-known that the carrier-envelope phase substantially
modi�es ionization probabilities [36, 37]. The results
presented here also con�rm this e�ect for the tunneling
phenomena. Transmission probabilities (hence, also pho-
tocurrents emitted from the surface) can then be changed
by the carrier-envelope phase even by two orders of mag-
nitude.

8. Conclusions

As mentioned above, our algorithm is convergent pro-
vided that a su�cient number of discretization points is
introduced. For systems considered here, this number
should not be smaller than 100. If the laser �eld is very
weak, this does not create signi�cant numerical problems,
except that calculations become longer. However, when
the laser �eld is su�ciently intense, the algorithm based
on the transfer matrix is unstable. This instability is due
to the existence of closed channels, which introduce into
numerical calculations very small and very large numbers
at the same time. Augmenting precisions signi�cantly
slows down the calculation and does not diminish the
problem. We have found that it is possible to make this
algorithm numerically stable by just applying nonlinear
matrix transformations, without introducing higher pre-
cisions.

Illustrations presented in this paper show that tun-
neling of electrons through multibarrier semiconductor
structures can be changed signi�cantly by applied non-
perturbative electric �elds: oscillating in time or con-
stant. The e�ciency of the algorithm presented in this
contribution opens up the possibility of investigating sur-
face phenomena (like photoemission or high-order har-
monic generation) in the presence of more realistic laser
pulses that gradually decrease within solids and extend
on a mesoscopic scale in vacuum. These problems have
been partly investigated for instance in [38, 39]. Further
investigations in particular in the context of photoemis-
sion form a metal tip [9] and threshold e�ects in multi-
photon processes [40, 41] are planned to be carried out.
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