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Spectroscopic Studies on Distorted Structure Nanomolecules
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We have applied Lie algebraic model to distorted structure molecules to determine the vibrational spectra of
di�erent stretching and bending vibrational modes. The the Lie algebraic model of the Hamiltonian expression is
H = E0 +

∑n
i=1 AiCi +

∑n
i<j AijCij +

∑n
i<j λijMij . By using the Lie algebraic method, the stretching vibrational

energies of fullerene (C80) are calculated in the one-dimensional [U(2)] framework. Using the model Hamiltonian
so constructed, we have calculated the local mode vibrational energy levels of the fullerene (C80) accurately.

PACS: 03.65.Fd, 07.57.−c, 02.20.Sv, 78.30.Na

1. Introduction

Molecular spectroscopy is an area of active interest
from many standpoints. Due to its numerous connections
with other scienti�c areas, this branch of modern physics
is playing an essential role in both experimental and the-
oretical approaches [1] to understanding a huge number
of important problems. In recent years, molecular spec-
troscopy [2] has been going through an exciting time of
renewed interest [3�7] which, once again, is being fueled
by the rapid development of sophisticated experimental
approaches. The algebraic methods have been found to
be very much useful in the study of vibrational spectra
of medium and large molecules using the Lie algebra, es-
pecially after the development of quantum mechanics in
the �rst part of 20th century. The interesting area of
current research in molecular physics is to interpret the
experimental data with the help of theoretical models.
Two traditional approaches like Dunham-like expansion
of energy levels in terms of rotation-vibration quantum
number and the solution of the Schrödinger equation with
potentials have been used so far in the analysis of ex-
perimental data. The new theoretical concept � vibron
model (based on the Lie algebra) to study molecular spec-
tra was built in the last part of the 20th century. This
new model seems to o�er a concrete and complementary
technique to the traditional approaches used in molecular
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spectroscopy. The algebraic model (vibron model) orig-
inally developed for diatomic and tri-atomic molecules.
U(4) and U(2) algebraic model been used so far in the
analysis of experimental data [8]. The Lie algebraic ap-
proach has been successfully applied to the study of the
vibrational frequencies of HCN, HCCF, HCCD, tetrahe-
dral and nickel metalloporphirins. The stretching vibra-
tions of some polyatomic molecules like n-alkane molecule
and polyethylene have been described using U(2) algebra.
In order to deal with these problems, a local mode

method contrasted with the usual normal mode analy-
sis has been developed. The theoretical description of
the observed features has so far mostly focused on the
study of the stretching modes but not the bending modes.
Thus, the theoretical studies of excited vibrational states
of molecules provide new challenges.
In this paper, we have applied the algebraic methods

to the study of the vibrational energy levels of distorted
structure of nanomolecules and compare results with ex-
perimental values.

2. Approach to algebraic method

with Lie algebra

In the last few years, an algebraic method has been
introduced as a computational tool for the analysis and
interpretation of experimental ro-vibrational spectra of
small- and medium-size molecules. This method has
been used extensively in chemical physics and molecu-
lar physics. This method is based on the idea of dy-
namic symmetry, which, in turn, is expressed through

(49)
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the language of the Lie algebras. By applying algebraic
techniques [3�5], one obtains an e�ective Hamiltonian
operator that conveniently describes the ro-vibrational
degrees of freedom of the physical system. Within this
framework, any speci�c mechanism relevant to the cor-
rect characterization of the molecular dynamics and spec-
troscopy can be accounted for. The algebraic methods [9]
are formulated in such a way that they contain the same
physical information of both ab initio theories (based on
the solution of the Schrödinger equation) and of semi-
-empirical approaches (making use of phenomenological
expansions in powers of appropriate quantum numbers).
However, by employing the powerful method of group
theory [10], the results can be obtained in a more rapid
and straightforward way. Now this approach and its hy-
brid is used to treat polyatomic vibrations and various
other problems.

In recent years, algebraic models, such as the Lie al-
gebraic methods and boson-realization model have been
proposed for the descriptions of vibrations, rotations
[11, 12], and rotation-vibration interactions in poly-
atomic molecules. Algebraic methods have been exten-
sively used to study problems in nuclear physics, molec-
ular physics and quantum optics etc., for example, the
problems of vibrational excited states and potential en-
ergy surfaces for small polyatomic molecules have been
solved successfully [13�15]. The U(4) model deals with
the rotation and the vibration simultaneously, but it be-
comes quite complicated when the number of atoms in
a molecule are more than four. The U(2) model [8] was
particularly successful in explaining stretching vibrations
of polyatomic molecules such as benzene-like and octa-
hedral molecules. This model was extended to deal with
stretching vibrations in triatomic molecules. In this pa-
per, we use the U(2) algebraic model to study the higher
excited vibrations of fullerenes such as C60, C70, C74, C80

and other molecules. In this paper we concentrate only
on the study of C80 molecule.

The C80 has been termed as one of the three �missing
fullerenes� due to its extremely low abundance in the
Hu�man�Kratschmer soot. Recently, however, two C80

isomers were synthesized by Dennis and Shinohara, as a
byproduct of the latter's work in generating endohedral
metallofullerenes [14]. One of these was �rst noted as
a very-late-eluting fraction in HPLC separations using
buckyprep columns; analysis with CNMR established its
D5d symmetry (Fig. 1) [15].

It was felt that this species would be an ideal sub-
ject for photo-physical analysis. Its strong retention on
HPLC columns helps to keep it free from contamination
by fullerenes of di�erent mass, and by isomers of di�erent
structure. Moreover, its structure is directly related to
C60 and C70 via an extension of the famous ten-carbon-
-addition sequence: C60{Ih} → C70{D5d} → C80{D5d}.
Since the two lower species have high ΦISC values, strong
transient absorptivities, and long triplet lifetimes, it was
through that C80{D5d} might display analogous proper-
ties [16].

Fig. 1. C80 {D5d}.

The C80{D5d} isomer lacks appreciable transient ab-
sorption [17], this is apparently due to a combination of
negligible quantum yield and small triplet-state epsilons.
It does quench singlet oxygen emission, albeit at about
1/3rd of the di�usion limit this suggests that the T1 state
of C80{D5d} is within 1 kT (≈ 300 cm−1) of 7880 cm−1.

In constructing this U(2) algebraic model, we use the
isomorphism of the Lie algebra of U(2) with that of the
one-dimensional Morse oscillator. The eigenstates of the
one-dimensional Schrödinger equation, with a Morse po-
tential

h(px) = p2/2µ+D[1− exp(−αx)]
2

(1)

can be put into one to one correspondence with the rep-
resentations of U(2) ⊃ O(2), characterized by the quan-
tum numbers |N,m⟩ with the provision that one takes
only the positive branch of m, i.e. m = N, N − 2, . . . , 1
or 0 for N = odd or even (N = integer). The Morse
Hamiltonian (1) corresponds in the U(2) basis to a sim-
ple Hamiltonian, h = C̄0 +AC, where C is the invariant
operator of O(2), with eigenvalues (m2 −N2).

The eigenvalues of h are

C̄ = C̄0 +A(m2 −N2),

m = N, N − 2, . . . 1 or 0 (N = integer). (2)

Introducing the vibrational quantum number ν = (N −
m)/2, Eq. (2) can be rewritten as

C̄ = C̄0 − 4A(Nν − ν2), ν = 0, 1, . . . N/2

or N − 1/2 (N = even or odd). (3)

The value of C0, A, and N are given in terms of µ, D
and α by C0 = −D,−4AN = hα(2D/µ)1/2, 4A =
−h2α2/2µ. One can immediately verify that these are
the eigenvalues of the Morse oscillator.

Now consider a molecule with n bonds. In the algebraic
model, each bond i is replaced by an algebra (here Ui(2)),
with Hamiltonian hi = C̄0i+AiCi where Ci is the invari-
ant operator of Oi(2) with eigenvalues −4(Niνi − ν2i ).
The bonds interact with a bond�bond interaction. Two
types of interaction are usually considered, which we de-
note by Cij and Mij and are called the Casimir and Ma-
jorana [8] interactions, respectively.

The algebraic model Hamiltonian [18] we consider is
thus



Spectroscopic Studies on Distorted Structure Nanomolecules . . . 51

H = E0 +

n∑
i=1

AiCi +

n∑
i<j

AijCij +

n∑
i<j

λijMij . (4)

In Eq. (4) Ci is an invariant operator with eigenvalues
4(ν2i − Niνi) and the operator Cij is diagonal with ma-
trix elements

⟨Ni, νi;Nj , νj |Cij |Ni, νi;Nj , νj⟩
= 4

[
(νi + νj)

2 − (νi + νj)(Ni +Nj)
]
, (5)

while the operator Mij has both diagonal and non-
-diagonal matrix element,

⟨Ni, νi;Nj , νj |Mij |Ni, νi;Nj , νj⟩
= ⟨Niνj +Njνi − 2νiνj⟩,

⟨Ni, νi + 1;Nj , νj − 1|Mij |Ni, νi;Nj , νj⟩
= −[νj(νi + 1)(Ni − νi)(Nj − νj + 1)]

1/2
,

⟨Ni, νi − 1;Nj + 1|Mij |Ni, νi;Nj , νj⟩
= −[νi(νj + 1)(Nj − νj)(Ni − νi + 1)]

1/2
. (6)

Equation (6) is a generalization of the two-bond model
to n bonds.
The simplest basis to diagonalize the Hamiltonian is

characterized by the representation of local mode chain,
where below each group we have used quantum num-
bers characterizing the eigenvalues of the corresponding
invariant operator. N is the number of bosons related
to stretching physical modes. The quantum numbers vi
correspond to the number of quanta in each oscillator
while V is the total vibrational quantum number given
by [3�5],

V =
n∑

i=1

vi. (7)

For a particular polyad, the total vibrational quantum
number is always conserved. The inclusion of Mij in
the local Hamiltonian operator cannot a�ect the conser-
vation rule. In Eq. (5), Ci is an invariant operator of
uncoupled bond with eigenvalues 4(ν2i − Niνi) and the
operator Cij for coupled bonds are diagonal with matrix
elements [3, 4].

3. Results and discussions

We have used U(2) algebraic model to study the vibra-
tional spectra of the fullerene (C80 and C80�O) molecules
with fewer algebraic parameters (i.e. A, A′, λ and N (vi-
bron number)).
The values of vibron number (N) can be determined

by the relation

Ni =
ωe

ωeχe
− 1, (i = 1, 2, . . .), (8)

where ωe and ωeχe are the spectroscopic constants of di-
atomic molecules of stretching interaction of the molecule
considered. This numerical value must be seen as initial
guess; depending on the speci�c molecular structure, one
can expect changes in such an estimate, which, however,
should not be larger than ±20% of the original value
[Eq. (8)]. The vibron number N between the diatomic

molecules C�C are 140. From Fig. 1, it is noticed that
some of the bonds are equivalent. It may be noted that
during the calculation of the vibrational frequencies of
fullerene C80 and C80�O, the value of N is kept �xed
and not used as free parameter.
The second step is to obtain a starting guess for the

parameter A. As such, the expression for the single-
-oscillator fundamental mode as

E(ν − 1) = −4A(N − 1). (9)

In the present case we have di�erent energies, correspond-
ing to symmetric and antisymmetric combinations of the
di�erent local modes. A possible strategy is to use the
center of gravity of these modes, so the guess for

Ā =
Ē

4(1−N)
. (10)

The third step is to obtain an initial guess for λ. Its role is
to split the initially degenerate local modes, placed here
at the common value E used in Eq. (9). Such an estimate
is obtained by considering the simple matrix structure,
we can �nd

λ =
|E1 − E2|

2N
. (11)

A numerical �tting procedure to adjust (in a least-
-squares sense, for example) the parameters A and λ
starting from values Eq. (10) and Eq. (11), and A′ (whose
initial guess can be zero).
To get an estimation of the precession of both observed

and calculated data, we use standard deviation (SD) de-
noted by σ at the bottom of two tables

σ2 =
1

o− p

o∑
i=1

(Ei
cal − Ei

obs)
2, (12)

where o is the number of observed data and p is the num-
ber of parameters used in the �tting.
The �tting parameters used in the study of vibrational

spectra of buckminsterfullerene (C80) is given in Table I.

TABLE I

Fitting parameters used in the study of fullerene (C80).

Vibron number Stretching algebraic parameters [cm−1]

N A λ A′

140 −0.7463 0.1562 −0.0562

4. Conclusion

Using model Hamiltonian, we have presented an al-
gebraic model of coupled one-dimensional Morse oscilla-
tors which can be used to describe C�C stretching vibra-
tions of polyatomic molecules with good accuracy. The
model presented here describes the splitting of local C�C
stretching modes due to residual inter-bond interactions.
The splitting pattern determines the nature of interac-
tion. Once we get the parameter, one then predicts the
splitting pattern of overtones. It is worth pointing out
that most applications of the previous algebraic models
are restricted to vibrations of gas molecules.
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TABLE II

Simulated and calculated energies (cm−1) of fullerene
(C80) [19] for V = 1.

Normal level Fullerene (C80) molecule Percentage of deviation

I Ref. [19] II This study ∆|I − II|/I × 100 [%]

ν1 162.92 162.78 0.023%

ν2 227.54 228.38 0.197%

ν3 306.89 307.46 0.343%

ν4 376.13 375.23 0.238%

ν5 442.04 442.89 0.031%

ν6 470.79 472.29 0.456%

ν7 492.65 490.33 0.193%

ν8 515.37 514.39 0.147%

ν9 540.74 540.09 0.019%

ν10 607.34 606.78 0.145%

ν11 638.44 637.89 0.148%

ν12 655.08 654.09 0.146%

ν13 684.37 681.56 0.198%

ν14 704.19 704.87 0.018%

ν15 733.64 734.88 0.113%

ν16 768.40 767.77 0.145%

ν17 787.92 790.64 0.216%

ν18 833.73 836.56 0.254%

ν19 857.38 860.34 0.331%

ν20 868.71 869.33 0.116%

ν21 901.56 899.38 0.142%

ν22 912.58 910.99 0.196%

ν23 957.21 954.66 0.199%

ν24 1066.85 1063.52 0.198%

ν25 1183.11 1179.99 0.172%

ν26 1214.91 1215.62 0.001%

∆(RMS) = 2.381 cm−1.

In this study, vibrational spectra of fullerene for 26
vibrational bands, we obtain the RMS deviation i.e.
∆(RMS) = 2.381 cm−1 from Table II. The present cal-
culations demonstrate that U(2) model can be applied
successfully to the molecules having 80 number of atoms
or even more than that. More accurate results can be
obtained if the interaction between the stretch and bend
is considered. It is believed that once we get the ob-
served energy levels of higher overtones and combination
bands, the comparison of calculated bands can be eas-
ily done with the help of model Hamiltonian using the
parameters.
Hence, the results of our calculation on C80 consid-

ering its both structural and vibrational properties by
algebraic method and comparing the results obtained by
semi-empirical PM3 [20] calculations, establish the near-
est precision.
We hope that this work will stimulate further research

in analysis of vibrational spectra of other nanomolecules
like protein molecules where the algebraic approach has
not been applied so far.
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