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Using variational Monte Carlo method we calculated the lowest order relativistic corrections for the ground
state energies of the helium-like atoms, up to Z = 10, and also for some excited state energies of the helium atom.
These relativistic corrections include: mass�velocity e�ect, orbit�orbit interaction, spin magnetic and dipole
moments of the two electrons and the Darwin e�ect. Moreover, correction due to the nucleus motion has been also
calculated. Our results were obtained by using two new types of compact and accurate trial wave functions for
the helium ions. For excited states we used simple trial wave functions of good quality and accurate results. The
obtained results are in good agreement with the most recent previous accurate values and also with the exact values.
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1. Introduction

The nonrelativistic energies for the ground and ex-
cited states of helium and helium-like atoms are obtained
by solving the nonrelativistic Schrödinger equation using
many types of wave functions [1�8]. However, most of
these studies are mainly based on the precision and con-
vergence of variational wave functions instead of correc-
tion to the Hamiltonian, and hence the results obtained
cannot be compared with experimental values. In or-
der to compare theoretical atomic energies with their ex-
perimental counterparts, the nonrelativistic Schrödinger
equation must be evaluated to high accuracy and a num-
ber of corrections such that the motion of the nucleus,
radiative and quantum electrodynamics (QED) e�ects,
must also be taken into account.
Many studies have been presented to calculate the rel-

ativistic corrections (both lowest and higher order), the
mass related corrections, and some QED corrections for
helium [9�11] and lithium [12�14] to an accuracy that
meets or exceeds the current level of experimental pre-
cision. In 1958, Pekeris [15] presented accurate calcula-
tions for the relativistic corrections of two electron atoms
with nuclear charge up to Z = 10 using �rst-order per-
turbation theory and a wave function with many pa-
rameters. Also, variational and di�usion Monte Carlo
techniques are used to calculate relativistic corrections
to the ground state energies of He, Be2+, Ne8+, Be and
Ne atoms using an accurate non-relativistic wave func-
tion and �rst order perturbation theory [16]. In Ref. [17]
the motion of the nucleus is taken into consideration to
obtain the ground state energy of the helium atom and
it was proven that the result of variational calculation
would be lower than the experimental value when the nu-
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clear motion is ignored. Furthermore, they could prove
that taking into account the Breit α2 (where α = 1/c is
the �ne structure constant) correction and correction of
order α3 will improve the accuracy of the ground state en-
ergy to approach the corresponding experimental value.
Stanke et al. [18] presented an approach to calculate the
leading-order relativistic corrections for ground and ex-
cited states of helium isotopomers: 3He and 4He. These
corrections include the mass�velocity and Darwin terms,
as well as terms due to magnetic orbit�orbit and Fermi
contact interactions.
Recently, Alexander et al. [19] have proved that vari-

ational Monte Carlo (VMC) techniques can accurately
evaluate the lowest-order relativistic corrections and the
mass polarization term for the three lowest states of the
helium atom with symmetry 1S, 1P , 1D, 3S, 3P , and
3D, using a set of medium-quality, explicitly correlated
wave functions. The obtained results are in good agree-
ment with that obtained using a high-quality Hylleraas
wave function. The corrections of higher order in α in-
cluding: α4, α5 and α6 have been calculated in many
works [20�22]. These works demonstrate that these cor-
rections are needed to achieve a high level of agreement
between the experimental and the theoretical results. In
our previous work [23] we used VMC method to calculate
both the ground and excited states of helium atom and
succeeded to obtain accurate results.
Extending from our previous work [23] and the results

obtained in [17, 19], our goal in the present paper is to
use VMC method to compute the lowest order relativistic
corrections as well as the e�ect of the nucleus motion to
the ground state of He atom and He-like isoelectronic
ions up to Z = 10 and also, for some excited states of
helium atom.

2. Method of calculations

The VMC method is based on a combination of two
ideas, namely the variational principal and Monte Carlo
evaluation of integrals using importance sampling based
on the Metropolis algorithm. It is used to compute quan-

(42)
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tum expectation values of an operator. In particular, if
the operator is the Hamiltonian, its expectation value is
the variational energy,

EVMC =

∫
Ψ∗

T(R)ĤΨT(R)dR∫
Ψ∗

T(R)ΨT(R)dR
, (2.1)

where ΨT is a trial wave function and R is the 3N -
-dimensional vector of the electron coordinates. Accord-
ing to the variational principle, a trial wave function for
a given state must produce an energy which is above the
exact value of that state; i.e. EVMC ≥ Eexact.
To evaluate the integrals in Eq. (2.1) we �rstly con-

struct a trial wave function, Ψα
T(R), depending on a set

of α-variational parameters α = (α1α2, . . . αN ) and then
vary the parameters to obtain minimum energy.
Variational Monte Carlo calculations determine EVMC

by writing it as [24]:

EVMC =

∫
P (R)EL(R)d(R) (2.2)

where P (R) = |ΨT(R)|2∫
|ΨT(R)|2 dR is positive everywhere and

interpreted as a probability distribution and EL =
ĤΨT(R)
ΨT(R) is the local energy function.

The value of EL is evaluated using a series of points Rij

sampled from the probability density P (R). At each of

these points the weighted average ⟨EL⟩ =
∫
Ψ2

T(R)EL dR∫
Ψ2

T(R)dR
,

is evaluated. After a su�cient number of evaluations the
VMC estimate of EVMC will be

EVMC = ⟨EL⟩ = lim
N→∞

lim
L→∞

1

N

1

L

N∑
j=1

L∑
i=1

EL(Rij),

(2.3)

where L is the ensemble size of random numbers
{R1, R2, . . . , RL}, which may be generated using a vari-
ety of methods [25, 26] andN is the number of ensembles.
These ensembles so generated must re�ect the distribu-
tion function itself. A given ensemble is chosen according
to the Metropolis algorithm [27].

3. Relativistic Hamiltonian for the
two-particle systems

The Hamiltonian of the two-electron atom which takes
into account relativistic corrections (in atomic units
(a.u.)) takes the form [28]:

H = H0 +H1 +H2 +H3 +H4 +H5, (3.1)

where the description of each term is as follows:
(i) The �rst term H0 represents the non-relativistic

approximation and is given by

H0 =
1

2

(
p21 + p22

)
− Z

r1
− Z

r2
+

1

r12
. (3.2)

Here r1 = |r1| and r2 = |r2|, where r1 and r2 denote the
relative radius vectors of the two electrons with respect
to the nucleus and r12 is the distance between the two
electrons, i.e. r12 = |r1 − r2|.
(ii) The second term in (3.1) is given by

H1 =
−1

M
(∇1 ·∇2). (3.3)

(iii) The third term in (3.1), H2, is the polarization

term and introduces the movement of the nucleus, where
M is the �nite nucleus-to-electron mass ratio. The im-
portance of this term appears especially when comparing
with experimental values. The energies obtained by ig-
noring this term are always lower than the corresponding
experimental values. Then we can say that taking into
account the nucleus motion (H1) will raise the energy to
approach experimental values. It is given by

H2 = − 1

8c2
(
p41 + p42

)
. (3.4)

The term H2 is the mass�velocity correction and it is
readily seen to be the relativistic e�ect due to the kinetic
energy and it represents the dependence of the mass of
the electron on the velocity.

(iv) The fourth term in (3.1), H3, is de�ned by

H3 =
−1

2c2

[
p1 · p2

r12
+

(r12 · p1)(r12 · p2)

r312

]
. (3.5)

Now, H3 is the orbit�orbit (retardation) term which rep-
resents the classical relativistic correction to the interac-
tion between electrons.

(v) The �fth term in (3.1), H4, is de�ned by

H4 =
π

c2

[
Z
δ(r1) + δ(r2)

2
− δ(r12)

]
. (3.6)

The Hamiltonian H4 represents the electron�nucleus and
electron�electron Darwin e�ect. The �rst term inH4, the
one-electron Darwin arises from the smearing of the elec-
trons due to their high speed. It can be considered as a
correction to the distance between the electrons and the
nuclei resulting in an overall decrease in the Coulomb at-
traction. Consequently, this term always increases the
total energy of the system. The second term is the two-
-electron Darwin correction term, as with the �rst term,
it serves to correct point-like charge distributions. Since
it is a two-electron term, it reduces the repulsion be-
tween electrons. The energy corresponding to this term
is always negative because it is proportional to the mi-
nuscule probability of two electrons being at the same
point in space; it is expected to be small. However, it
is still important since it is closely related to the spin�
spin interaction term. Also, it allows an estimation of
the two-electron Lamb-shift correction interaction term.
The Darwin correction can be calculated either directly
using the delta function or by applying the Poisson equa-
tions [29]:

∇2
i

1

ri
= −4πδ(ri), ∇2

i

1

rij
= ∇2

j

1

rij
= −4πδ(rij).

Our calculations are based on using the Poisson equa-
tions to evaluate the Darwin correction. Then, we will
have

H4 =
−1

8c2

[( ∑
i=1,2

∇2
i

)(∑
j

Z

rj

)

−

( ∑
i=1,2

∇2
i

)(∑
i̸=j

1

rij

)]
. (3.7)
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(vi) Finally; the sixth term in (3.1), H5, is the spin�
spin correction term and is given by

H5 =
1

c2

[
− 8π

3
(S1 · S2)δ(r12)

+
1

r312

(
S1 · S2 −

3(S1 · r12)(S2 · r12)
r212

)]
. (3.8)

The physical signi�cance of H5 is to represent the inter-
action between the spin magnetic and dipole moments
of the two electrons. For the ground state of helium-like
atom the �rst term appearing in H5 (the dipolar interac-
tion term) is identically zero [19]. Furthermore, H5 can
be approximated by substituting: S1 · S2 = −3/4, then
we will have [17]:

H5 =
2π

c2
[δ(r12)].

Replacing δ(r12) by using the Poisson equations,H5 takes
the following form:

H5 =
−π

4c2


∑

i=1,2

∇2
i

∑
i ̸=j

1

rij

. (3.9)

Now, we will indicate the method of calculating the
expectation values of the corrections given by Eqs. (3.2)
to (3.9). In our calculations we use the form of H0 in the
Hylleraas coordinates [30]:

H0 = −1

2

(
n∑

i=1

∂2

∂r2i
+

n∑
i=1

2

ri

∂

∂ri
+

n∑
i<j

2
∂2

∂r2ij

+
n∑

i<j

4

rij

∂

∂rij
+

n∑
i ̸=j

ri + rij − rj
ririj

∂2

∂ri∂rij

+
n∑

i̸=j

n∑
k>j

rij + rik + rjk
rijrik

∂2

∂rij∂rik

+

n∑
i=1

1

r2i

∂2

∂θ2i

n∑
i=1

1

r2i sin
2 θi

∂2

∂φ2
i

n∑
i=1

cot θi
r2i

∂

∂θi

−
n∑

i̸=j

(
rj cot θj
ririj sin θi

+
1

2
cot θi

rij − rj − ri
r2i rij

)
∂2

∂θi∂rij

−
n∑

i̸=j

rj cot θj
ririj sin θi

sin(φi − φj)
∂2

∂φi∂rij

)

+
n∑

i=1

−Z

ri
+

n∑
i<j

1

rij
. (3.10)

For corrections given by Eqs. (3.3) to (3.8), we �rstly
identify the following quantity for any 3N -dimensional
vector of electron coordinates R [16]:

F i(R) = Ψ(R)
−1∇iΨ(R), i = 1, 2. (3.11)

Then, in terms of F i(R) we could calculate the various
expectation values using the following formulae:

H1 =
1

M

∑
i<j

F i · F j (3.12)

H2 =
−1

8c2

∑
i

(∇i · F i + F 2
i )

2, (3.13)

H3 =
−1

2c2

∑
i<j

[
(rij · F i)(rij · F j)

r3ij
+

F i · F j

rij

]
, (3.14)

H4 =
1

4c2

(∑
i

[
∇i · F i + 2F 2

i

])

×

∑
j

−Z

rj
+
∑
j<k

1

rjk

, (3.15)

H5 =
−1

2c2

∑
i<j

[
∇i · F i + 2F 2

i

]∑
j<k

1

rjk

. (3.16)

4. Ground-state of the helium-like atom

Our calculations for the ground-state of helium and its
isoelectronic ions are based on using two di�erent types
of trial wave functions, the �rst one is a highly compact
wave function that has a clear physical meaning and sat-
is�es all the boundary conditions; this wave function is
proposed �rstly in [31] and is given by

Ψ1(r1, r2, r12) =
(
1 + P̂

)
exp

(
a1r1 + b1r

2
1

1 + r1

)
× exp

(
a2r2 + b2r

2
2

1 + r2

)
exp

(
dr12

1 + er12

)
(4.1)

where a1, a2, b1, b2, d, and e are variational parameters
and P̂ is the operator that permutes the two electrons.
The new in this wave function is the functional form:

exp
(

ar+br2

1+r

)
which helps in satisfying Kato-cusp condi-

tions, which have been stressed in the construction of an
accurate wave function in the past. This wave function
was used to calculate the ground state energy for the
He atom and He-like isoelectronic ions for Z = 1 to 10
and the results obtained were better than previous works
for compact wave functions for the two-electron systems.
Here we discuss the validity of using this compact wave
function for calculating the relativistic corrections given
by Eq. (3.1) for the ground state energies of helium-like
atoms {Z = 1, 2, . . . , 10}. The second type of trial wave
function takes the form

Ψ2(r1, r2, r12) =

(
2β + 1− e−βr12

2β

)
e−Z(r1+r2)

×
[
1 + C1

(
r21 + r22

)
+ C2(r

4
1 + r42)

]
, (4.2)

where β, C1 and C2 are variational parameters. Ψ2 has
been constructed by [32] as a simple function having ac-
curacies and shapes similar to those given by Green et al.
[33] or by Chandrasekhar et al. [34, 35], but with cor-
rect cusp conditions. Ψ2 is a product of hydrogenic one-
-electron solutions and a fully correlated part satis�es all
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TABLE I

Expectation values of the polarization term H1 for he-
lium isoelectronic ions and nuclear mass M for Z =
1, 2, . . . , 10.

Z
The polarization

term ⟨H1⟩ M

1

0.00001797(8)a

0.00001793(6)b

0.0000178874c

0.00001790703d

1836.1526724c

2

0.00002183(4)a

0.00002189(1)b

0.0000218014c

0.00002180505d

7294.299536c

3

0.00002263(6)a

0.00002298(2)b

0.00002259672c

0.0000226012d

12786.393087c

4

0.00002569(1)a

0.00002599(2)b

0.000025600578c

0.00002560361b

16424.203212c

5

0.00002749(2)a

0.00002949(6)b

0.00002754709c

0.0000275490d

20063.736514c

6

0.00003138(2)a

0.00003139(3)b

0.000031335806c

0.00003133991b

21868.662136

7

0.00003210(1)a

0.00003299(4)b

0.000032056630d

0.00003205963d

25519.042727c

8

0.00003279(3)a

0.00003269(6)b

0.000032624295c

0.00003262448b

29148.946104c

9

0.00003185(9)a

0.00003131(4)b

0.0000313075833c

0.00003130749d

34622.970927c

10

0.00003349(2)a

0.00003374(1)b

0.0000334032008c

0.00003340341d

36433.989510c

a Results obtained using three-parameter wave
function Ψ1.

b Results obtained using trial wave function Ψ2.
c Accurate results from [5].
d Exact results from [15].

the coalescence cusp conditions at the Coulomb singu-
larities. The application of using Ψ2 was extended not
only for ground state of helium but also to other ions
belonging to the He isoelectronic sequence up to Z = 10.
The results obtained are in good agreement with the
exact values. Using the above two types of trial wave
functions we have calculated the relativistic corrections
given by Eq. (3.1) for Z = {1, . . . , 10}. In Table I we

present the expectation values of the polarization term
H1 for helium isoelectronic ions and nuclear mass M for
Z = 1, 2, . . . , 10.

5. Excited states of the helium atom

In this section we present the trial wave functions for
the lowest four excited states corresponding to the con-
�gurations 1s2s and 1s2p.
1. For the lowest ortho (space-antisymmetric) state

23S, corresponding to the con�guration 1s2s, the wave
function takes the form

Ψ23S(r1, r2) = N [u1s(r1)v2s(r2)− v2s(r1)u1s(r2)]

× f1(r12), (5.1)

where

u1s(r) = exp(−Zir),

v2s(r) = (1− Z0r/2) exp(−z0r/2),

and Zi, Z0 are variational parameters and N is a nor-
malization constant.
2. The 21S state (space-symmetric) is para-state cor-

responding to the con�guration 1s2s. We construct a
simple wave function which would be space-symmetric
and orthogonal to the ground state in the form

Ψ21S(r1, r2) = N [u1s(r1)v2s(r2) + v2s(r1)u1s(r2)]

× f1(r12), (5.2)

where

u1s(r) = exp(−2r),

v2s(r) = exp(−τ1r)− Cr exp(−τ2r),

and τ1, τ2, and C are variational parameters.
The above trial wave functions were �rstly presented

in [36] but without taking into account electron�electron
correlation. In our work we modi�ed these trial wave
functions by adding the term f1(r12) which expresses
the correlation between the two electrons due to their
Coulomb repulsion. That is, we expect f to be small
when r12 is small and to approach a large constant value
as the electrons become well separated. A convenient and
reasonable choice for f1(r12) is

f1(r12) = exp

(
r

α(1 + βr)

)
, (5.3)

where α and β are additional positive variational param-
eters. The variational parameter β controls the distance
over which the trial wave function heals to its uncorre-
lated value as the two electrons separate. Using the cusp
conditions [37] we can easily verify that the variational
parameter α is given by α = 2.
3. For the 21P -state, which are the lowest para-states

corresponding to the con�guration 1s2p, simple trial
wave functions for these states may be taken as

Ψ21P (r1, r2) =
(
e−Zr1r2 cos θ2 e

−ar2

+ e−Zr2r1 cos θ1 e
−ar1

)
f2(r12), (5.4)

and
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f2(r12) = 1− 1

1 + 2λ
e−λr12 .

4. The 23P -state is the lowest ortho-state, correspond-
ing to the con�guration 1s2p Simple trial wave functions
for this state take the form

Ψ23P (r1, r2) =
(
e−Zr1r2 cos θ2 e

−ar2

− e−Zr2r1 cos θ1 e
−ar1

)
f3(r12), (5.5)

where f3(r12) is now given by

f3(r12) = 1− 1

1 + 4λ
e−λr12 .

In the above equations a and λ are variational parame-
ters. The wave functions Ψ21P and Ψ23P were introduced
by Christophe Pain [38]. It has been proven that using
variational method, these wave functions provide quite
accurate values for the energies and compact expressions
for the wave functions particularly in the asymptotic
region, which is important in the description of inter-
-particle interaction. In our work we have used Ψ23S ,
Ψ21S , Ψ21P and Ψ23P together with VMC method to
obtain both non-relativistic energies and relativistic cor-
rections for the lowest four excited states of the helium
atom.

6. Results

The Monte Carlo method described here has been em-
ployed for calculating the Breit α2 corrections and the
correction due to nucleus movement for the ground state
energy of helium atom and its isoelectronic ions. All en-
ergies are obtained in atomic units i.e. (~ = e = me = 1)
with c = 137.035999679 and a set of 4×107 Monte Carlo
integration points in order to make the statistical error
as low as possible. The values of the nuclear mass M in
Eq. (3.3) for di�erent values of Z = 1, 2, . . . , 10 which are
presented in Table I are taken from [5]. The parameters
appearing in Ψ1 were optimized in Ref. [31] and it has
been proven that these parameters can be written in a
general form depending on the nuclear charge Z. Firstly,
the two parameters a1, a2 and d were �xed (a1 = a2 =
−Z, d = 0.5) in order to satisfy all the cusp conditions.
Then, other parameters are given by the following rela-
tions: b1 = −1.0778× Z, b2 = 0.4142− 0.8287× Z, and
e = 0.2247 × Z. Then, the wave function Ψ1 exhibits
the advantage that it does not need to be optimized each
time for a given Z value. In our calculations we take the
values of the variational parameters in Ψ2 from Ref. [32].
In Table I we introduced the values of the expectation
values of the polarization term up to Z = 10 which rep-
resent the e�ect of the nucleus motion. From Table I, we
can see that our results have a good accuracy that can be
compared with both the most recent results and the ex-
act values. Also, it is clear that by adding this correction,
the energies will be raised. This concept was proven for
the ground state (Z = 2) of helium atom in [17]. Then,
we could now generalize it to include all helium ions up to
Z = 10. In Table II we displayed our results obtained for

non-relativistic energies and the relativistic corrections
using the trial wave functions Ψ1 and Ψ2. The results
presented in Ref. [16] using VMC method for Z = 2,
4, 10 are introduced for comparison together with the
exact Pekeris values [15]. It is clear from Table II that
our results are in most cases better than those obtained
using variational Monte Carlo in [16]. In general, the
results are in good agreement with the corresponding ex-
act data. Figure 1a represents ∆E versus the nuclear
charge Z, where ∆E = Eexact−E0, i.e. the di�erence be-
tween the non-relativistic energies corresponding to the
expectation value of H0 and the corresponding exact val-
ues using both Ψ1 and Ψ2.

Fig. 1. (a) Di�erence between the calculated nonrela-
tivistic energies and corresponding exact data, ∆E =
Eexact −E0, versus the nuclear charge Z. (b) Di�erence
between the obtained relativistic energies and relativis-
tic exact energies, ∆E = Erel−exact − Erel, against the
nuclear charge Z.

Accordingly, Fig. 1a displays a graphical representa-
tion of the comparison between the calculated values of
the nonrelativistic energies by using the two-wave func-
tions. This comparison shows that the results obtained
using Ψ1 are much better than those obtained by Ψ2.
In Fig. 1b, ∆E represents the di�erence between the to-
tal relativistic energies and the total exact energies, i.e.
∆E = Erel−exact−Erel. The total relativistic energies are
de�ned as Erel = E0+E1+E2+E3+E4+E5 (Ei = ⟨Hi⟩),
while the total exact energies are de�ned as the sum of
the exact nonrelativistic energies and the exact values of
the relativistic and nucleus movement corrections. Fig-
ure 1b con�rms that the results obtained using Ψ1 are
more accurate.

For excited states of helium, all the values of the vari-
ational parameters appearing in the trial wave functions
were optimized to minimize the energy. For the excited
states of helium we increased the VMC integration points
from 4 × 107 to 7 × 107 in order to achieve more good
and accurate results with our choice of trial wave func-
tions. In this way our results approach the corresponding
values obtained in [19]. Table III displays the nonrela-
tivistic energies and the relativistic corrections for the
lowest four excited states of helium atom. We also intro-
duced the most recent results obtained in previous works
using VMC method but with di�erent forms of trial wave
functions [19].
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TABLE II
Relativistic correction of helium and helium isoelectronic using wave function Ψ1 and Ψ2, the values in the
parentheses are statistical errors.

Z Nonrelativistic
energies H2 H3 H4 H5

1
−0.5261001(9)a

−0.5258080(6)b

−0.527750974c

−0.00003287(2)a

−0.00003276(2)b

−0.000032776c

−0.000000460(2)a

−0.000000473(4)b

−0.000000472606c

0.00002650(2)a

0.00002600(2)b

0.00002707205c

0.000000723313(5)a

0.000001071133(9)b

0.0000009178099c

2

−2.902637(3)a

−2.902011(3)b

−2.903724311c

−2.89933(1)d

−0.00072001(2)a

−0.00072218(7)b

−0.000720074c

−0.000712d

−0.000007670(1)a

−0.000007396(2)b

−0.000007407530c

−0.000008188d

0.00058803(4)a

0.00058801(1)b

0.00058818411c

0.0005838d

0.000033522775(1)a

0.000036414962(4)b

0.00003561617956c

0.0000384d

3
−7.278302(3)a

−7.277929(3)b

−7.279913341c

−0.00410013(2)a

−0.00410122(2)b

−0.004134249c

−0.000022880(2)a

−0.000022585(1)b

−0.00002279264c

0.00328106(3)a

0.00327477(3)b

0.00335086276c

0.000176552353(2)a

0.000178705591(3)b

0.00017870582527c

4

−13.65395(3)a

−13.65336(3)b

−13.65556617c

−13.65163(3)d

−0.01393454(7)a

−0.01379164(4)b

−0.013942403c

−0.01389d

−0.000050840(2)a

−0.000047853(1)b

−0.00004679729c

−0.0000488d

0.01120014(1)a

0.01124437(1)b

0.011258229c

0.0112067d

0.000505980374(5)a

0.000510671514(3)b

0.00050984642212c

0.0005266d

5
−22.02943(4)a

−22.02890(4)b

−22.03097151c

−0.03570705(2)a

−0.03540033(2)b

−0.03540842c

−0.00007986(6)a

−0.000081905(7)b

−0.00007945368c

0.02853183(3)a

0.02826066(2)b

0.0285314619c

0.001106259189(7)a

0.001108877726(6)b

0.001108852957c

6
−32.40465(5)a

−32.40389(5)b

−32.40624653c

−0.07536265(4)a

−0.07539549(4)b

−0.075395265c

−0.000129950(2)a

−0.000120606(4)b

−0.00012076608b

0.06067082(6)a

0.06067058(5)b

0.06067123554c

0.002055698404(1)a

0.002064867131(1)b

0.0020557067722c

7
−44.77985(6)a

−44.77919(6)b

−44.78144508c

−0.14235340(7)a

−0.14230180(8)b

−0.142362704c

−0.000179550(1)a

−0.000177531(4)b

−0.00017075579d

0.11409910(7)a

0.11385820(8)b

0.11445597288c

0.003426122167(1)a

0.003430349716(2)b

0.0034302727293c

8
−59.154910(8)a

−59.154200(8)b

−59.15659501c

−0.24635670(1)a

−0.24635060(6)b

−0.246366726c

−0.000229040(1)a

−0.000229003(2)b

−0.00022939619c

0.19745190(1)a

0.19794160(1)b

0.19794237808c

0.005317201324(7)a

0.005312586397(8)b

0.00531238556282d

9
−75.52969(1)a

−75.52895(2)b

−75.53171230c

−0.39907190(1)a

−0.39907480(2)b

−0.39906365c

−0.000308440(2)a

−0.000315806(9)b

−0.000296735186c

0.32040350(2)a

0.32046210(2)b

0.32046628674c

0.007762084502(3)a

0.007782121008(2)b

0.0077821042722c

10

−93.904720(1)a

−93.904320(3)b

−93.90680645c

−93.90285(6)

−0.61371870(2)a

−0.61371590(2)b

−0.613704821c

−0.613d

−0.000372810(8)a

−0.000372125(9)b

−0.000372719544c

−0.000378d

0.49023160(2)a

0.49133730(2)b

0.49264272456c

0.491487d

0.010919471121(1)a

0.010919276981(2)b

0.0109192267730c

0.011026d

a Results obtained using three-parameter wave function Ψ1. b Results obtained using trial wave function Ψ2.
c Exact results from [15]. d Results obtained using variational Monte Carlo from [16].

TABLE III
The relativistic corrections for the lowest four excited-states of the helium atom. The previous results [19] are cited for the sake
of comparison.

State Nonrelativistic
energies H1 H2 H3 H4 H5

23S
−2.175005(1)
−2.175229376(3)

0.000001019(3)
0.0000010199(6)

−0.000556853(4)
−0.0005568(2)

−0.000000086(3)
−0.000000086(1)

0.000441700(3)
0.00044186(7) 0

21S
−2.145971(2)
−2.14597351(3)

0.000001200(6)
0.000001247(1)

−0.000547211(4)
−0.000 547 2(3)

−0.000000480(1)
−0.00000483(2)

0.000436605(3)
0.0004366(1)

0.0000028940(4)
0.0000028894(7)

21P
−2.123843(1)
−2.12384289(7)

0.000006435(3)
0.000006319(1)

−0.000533349(1)
−0.0005335(4)

−0.00000107(1)
−0.000001083(1)

0.000426272(3)
0.0004262(2)

0.0000002450(3)
0.0000002448(6)

23P
−2.133164(6)
−2.13316407(4)

−0.000008800(3)
−0.000008848(2)

−0.000529856(4)
−0.0005275(3)

0.000001864(2)
0.000001864(1)

0.000400018(1)
0.0004212(1) 0

7. Conclusion

In this paper we have used variational Monte Carlo
method to calculate the relativistic corrections of order

α2 for the ground state of helium and helium-like atoms
and some excited states of helium. Also, the correction
due to the nuclear motion was taken into account. The
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obtained results were calculated using two kinds of com-
pact and accurate wave functions. The �rst one (Ψ1) is
a highly compact wave function that has a clear physical
meaning and satis�es all the boundary conditions [31].
The second (Ψ2) is a simple function having accuracies
and shapes similar to those given by Green et al. [33], but
with correct cusp conditions [32]. The results in general
are much better than those obtained in previous works.
Comparing with exact data it is clear that our results are
in good agreement with the corresponding exact values.
A comparison between results obtained using Ψ1 and Ψ2

is presented graphically. The comparison shows that the
�rst type Ψ1 leads to better results.
For the excited states, the relativistic corrections have

been calculated using simple and accurate forms of trial
wave functions. The obtained results achieve a good ac-
curacy comparing with previous data. Finally, we con-
clude that we have used the well known VMC techniques
together with new compact and accurate trial wave func-
tions, successfully, to calculate the relativistic corrections
for helium isoelectronic and some excited states of helium
atom.
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