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In this paper, we apply the reduced density trajectory, ϕ-mapping topological current theory and Ginzburg�
Landau model to study the current of the coherent state. We give the new expression of the current of the
coherent state. Based on this expression, the symmetry of the coherence is studied. We �nd that the current of
the coherent state corresponds to the supercurrent of two-condensate system. The partial wave functions of the
coherence carry new charges and their interaction is mediated by new U(1) gauge potential.
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1. Introduction

The idea is inspired by the quantum trajectory de-
scription of decoherence [1]. The trajectory was �rst
proposed by Bohm when he made a suggested interpre-
tation of the quantum theory for hidden variables [2].
The theory is known as the de Broglie�Bohm (BB) in-
terpretation of quantum mechanics. In the theory, all
particles have well-de�ned trajectories. The motions of
the particles are governed by the wave functions that sat-
isfy the Schrödinger equation. Therefore the BB quan-
tum theory of motion is a suitable tool with which one
studies coherence and decoherence [3, 4]. The one rea-
son of the decoherence is that the open quantum sys-
tem interacts with the environment. Unfortunately, it is
very di�cult to deal with decoherence problem using this
quantum trajectory approach because the environment
usually involves large number of degrees of the freedom.
To overcome this drawback, we assume the environment
to be the Markovian environment and describe the whole
system by a Markovian master equation. This equation
introduces two contributions: the time-evolution of the
coherent state and the quenching factor leading to de-
coherence. The quenching factor accounts for physical
properties of the environment and its interaction with the
coherent system. Combining the trajectory theory with
reduced density matrix theory yields a new trajectory
called reduced quantum trajectory [1]. The advantage of
this reduced quantum trajectory is that the environment
e�ects are described by a time-dependent damping fac-
tor when these trajectories are applied to the study of
an open quantum system. The reduced quantum trajec-
tory then describes in detail the evolution of the coherent
state. These provide insight in understanding decoher-
ence.
Recently, the discovery of the high critical temperature

of MgB2 has inspired a wide interest in the charged two-
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-condensate superconductors [5�7]. The two charged con-
densates in the superconductor are tightly bound fermion
pairs, or some other charged bosonic �elds such as elec-
tronic or protonic Cooper pairs in metallic hydrogen un-
der certain condition [8]. The charged two-condensate
wave functions correspond to the order parameters of the
two di�erent parts of the Fermi surface. They are coupled
because of their electromagnetic interaction. The system
is described by the Ginzburg�Landau model with two
�avors of Cooper pairs [9�11]. In Ref. [9], the authors
showed that the charged-condensate Ginzburg�Landau
model can be mapped onto a version of the nonlinear
O(3) σ-model and found that this system possesses a
hidden O(3) symmetry. There is a stable knot solution
in the superconductor. This provides us with a new way
to investigate the coherent quantum system.
The topology and geometry play an important role in

physics and mathematics and a great deal of works have
been done in the topology and geometry [12�17]. Espe-
cially, the vorticity of the vortex in condensate meter and
topology of the physical system have been studied by ap-
plying the ϕ-mapping topological current theory [18�21].
In this paper, we present the relation between the cur-

rent of coherent state and the supercurrent of the two-
-gap condensate system. The paper is organized as fol-
lows: in Sect. 2, the ϕ-mapping topological current the-
ory in reduced density trajectory is given. The current
of the coherent state is also presented. In Sect. 3, the
new expression of the current is derived. We �nd that
this current is similar to the supercurrent of the charged
two-condensate system. In Sect. 4, the symmetry and the
topological properties of the current of the coherent state
are studied based on Faddeev's O(3) nonlinear σ-model.
Finally, we make a conclusion.

2. ϕ-Mapping topological current theory

in reduced density trajectory

and the current of the coherent state

We give a brief review of the reduced quantum tra-
jectory approach as presented in [1]. We start with the

(31)
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calculation of the reduced density matrix. The total den-
sity matrix of the system is given by

ρ̂ = |ψt⟩ × ⟨tψ|, (1)

where the subscript t denotes the time-dependence of the
wave function. We take the environment degrees of free-
dom to be ri (i = 1, . . . , N). The system's reduced den-
sity matrix is then given by tracing the total density ma-
trix ρ̂ over the environment degrees of freedom, resulting
in

ρ̃t(r, r
′) =

∫
⟨r, r1, . . . rN |ψt⟩

× ⟨tψ|r′, r′1, . . . r′N ⟩dr1 . . . drN . (2)

Next the system reduced quantum density current can
be derived as follows:

J̃ t =
~
m
Im(∇rρ̃t(r, r

′))r=r′ , (3)

where J̃ t satis�es the continuity equation, which is given
as

∂tρ̃t +∇J̃ t = 0, (4)

where ρ̃t is the diagonal element of the reduced density
matrix, which provides the measured intensity. We now
de�ne the Bohmian-like velocity using (3) and (4):

V =
J̃ t
ρ̃t
. (5)

Therefore, we can de�ne a new trajectory associated with
the reduced density matrix

V =
~
m

Im(∇rρ̃t(r, r
′))

Re(ρ̃t(r, r′)) r=r′
, (6)

which is called reduced quantum trajectory. The disad-
vantage of this de�nition of velocity is it is di�cult to
give the detailed information at ρ̃t = 0, or at the zero
points of the wave functions. These zero points are the
singularity of the velocity. Next, we will illustrate the
exact expression of the velocity �eld and its topology at
zero point of wave functions based on ϕ-mapping topo-
logical current theory. To do this, we must consider the
BB quantum mechanics ansatz of the wave function

⟨r|ψt⟩ = Rt(r)e
iSt(r)/~, (7)

from the topological viewpoint, the wave function ⟨r|ψt⟩
is the section of the complex linear bundle, i.e. a section
of 2-dimensional real vector bundle. We can then write
this ansatz as

⟨r|ψt⟩ = ϕ1 + iϕ2. (8)

De�ning the unit vector of this ansatz yields

n1 =
ϕ1

∥⟨r|ψt⟩∥
, n2 =

ϕ2

∥⟨r|ψt⟩∥
. (9)

It is obvious that the unit vector satis�es the condition

nana = 1, a = 1, 2. (10)

Using this unit vector and (6), we write the velocity as

V i =
~
m
ϵabn

a∂in
b. (11)

In traditional quantum mechanics, the curl of the velocity
vanishes at zero points of the wave functions. However,
the curl of the velocity must be modi�ed along trajecto-
ries because ∇ × V need not vanish at nodal points of
the wave function [18]. The curl of the velocity is

∇× V =
~
m

(
ϵijkϵab∂jn

a∂kn
b
)
ei. (12)

Using Eqs. (9), the curl of the velocity can further be
written as

∇× V =
~
m
eiϵ

ijkϵab
∂

∂ϕc
∂

∂ϕa
(ln∥ϕ∥)∂jϕc∂kϕb. (13)

De�ning the vector Jacobian of ϕ by

eiϵ
ijk∂jϕ

c∂kϕ
b = ϵcbD

(
ϕ

x

)
, (14)

and using the well-known result from the Green function
theory in ϕ-space, we �nd that

∂

∂ϕa
∂

∂ϕa
ln∥ϕ∥ = 2πδ2(ϕ). (15)

Finally, the curl of the velocity is

∇× V =
~
m
2πδ2(ϕ)D

(
ϕ

x

)
, (16)

where D
(
ϕ
x

)
is the vector Jacobian of ϕ and satis�es

ϵijk∂jϕ
c∂kϕ

b = ϵcbDi
(
ϕ
x

)
. From this, we learn that the

trajectory is at the zero point of the wave function. We
consider, in general, a vector �eld ϕ on the smooth man-
ifold Σ ; a zero point p is a singular point of ϕ if ϕp = 0.
Consider a closed curve γ ∈ Σ encircling but never touch-
ing p. In completing one turn along γ, the vector �eld
ϕ will turn around itself a certain number of times. By
appropriately assigning signs to the direction of the turn,
the algebraic sum of turns is called index of the curve.
It is well known that the sum of all the indices of a cho-
sen vector �eld ϕ on a compact di�erentiable manifold
Σ equals the Euler�Poincaré characteristic of Σ that de-
scribes the topological properties of singular points. In
application here, all nodal points form the zero-line of
wave function and the zero-line of wave function is just
the locations of trajectories in de Broglie�Bohm quantum
mechanics. The zero points can be denoted by zil , where
l represent the ℓ isolated zero points on Σ . We assume
that u = (u1, u2) are the coordinates, so that δ2(ϕ) can
be expanded at the zero point

δ2(ϕ) =
ℓ∑
l=1

Clδ
2
(
xi − zil

)
, (17)

where Cl are positive coe�cients. The winding number
of the l-th trajectory is

W (ϕ, zi) = Cl

∫
Σ

δ2
(
xi − zil

)
D

(
ϕ

x

)
d2x
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= ClD

(
ϕ

u

)
zl

. (18)

Here, D
(
ϕ
u

)
is

D

(
ϕ

u

)
=

1

2
ϵjkϵab

∂

∂uj
ϕa

∂

∂uk
ϕb. (19)

If we let

|Wl| = |W (ϕ, zl)| = βl, (20)

where βl is the Hopf index of ϕ-mapping on Σ , with
the interpretation that the function ϕ covers the corre-
sponding region in ϕ-space βl times when a point covers
the neighborhood of the zero point zil once. Furthermore,
δ2(ϕ) can be expressed as

δ2(ϕ) =
ℓ∑
l=1

βl∣∣∣D(ϕu)∣∣∣
zl

δ2
(
xi − zil

)
. (21)

Let us de�ne

ηl = sgnD

(
ϕ

u

)
zl

=
D
(
ϕ
u

)
∣∣∣D(ϕu)∣∣∣

zl

= ±1, (22)

which is called the Brouwer degree of the map x→ ϕ(x).
Finally, the vorticity of the velocity at the zero points on
Σ is

Γ =

∫
Σ

(∇× V ) · dS =
h

m

∑
l

βlηl =
h

m
W, (23)

where W is the winding number of the zero points of the
trajectories on Σ . The zero points on the plane can be
seen as the topological solutions of the equation δ2(ϕ)
and can be written as

ϕ1(xµ) = 0, ϕ2(xµ) = 0, (24)

where µ = 1, 2, 3 . . .

Considering a quantum system in the double-slit ex-
periment, the system is described by the coherent state
of a particle and the state of the environment. The co-
herent state of a particle is

|Ψt⟩ = c1|ψ1,t⟩+ c2|ψ2,t⟩, (25)

where the coe�cients ca satisfy the condition

|c1|2 + |c2|2 = 1. (26)

We assume that the environment states are subject to
the elastic system�environment scattering conditions [1],
then only the environment state will evolve with time.
The environment state associated with each partial wave
is denoted by |Hα⟩. The initial state of the environment
states can be given by

|H1⟩ = |H2⟩ = |H0⟩. (27)

Using BB quantum mechanics ansatz, the coherent state
can be described without considering the interaction be-
tween coherence states and the environment

Ψt(r) = ⟨r|Ψt⟩. (28)

The density matrix associated with coherent state is

ρt(r, r
′) = Ψt(r, r

′)[Ψt(r, r
′)]

∗
. (29)

The diagonal element of this density matrix is the mea-
sured intensity. We write it as

ρt = |c1|2|ψ1,t|2 + |c2|2|ψ2,t|2

+2|c1||c2||ψ1,t|t|ψ2,t| cos δt, (30)

where δt is the time-dependent phase shift between the
partial waves. Similarly, the partial wave function ψi,t
can be written as

ψi,t = ⟨r|ψi,t⟩. (31)

In addition to writing the measured intensity for Ψt(r),
we de�ne the measured intensity of the partial wave func-

tion ρ
(i)
t as

ρ
(i)
t = ψ∗

i,tψi,t, i = 1, 2, . . . (32)

The partial wave function can also be expressed as

ψi,t = ϕ1i,t + iϕ2i,t. (33)

Recalling (9), the unit vector n(i) of the partial wave
function ψi,t is de�ned by

n1(i) =
ϕ1i,t

∥ψi,t∥
, n2

(i) =
ϕ2i,t

∥ψi,t∥
. (34)

The general initial coherent states get entangled with
the environment states when the environment is consid-
ered. The initial entangled state is

|Ψ⟩ = |Ψ0⟩ ⊗ |H0⟩, (35)

where |Ψ0⟩ is the wave function |Ψt⟩ at time t = 0. The
time-dependence of the entangled state is

|Ψt⟩ = c1|ψ1,t⟩ ⊗ |H1,t⟩+ c2|ψ2,t⟩ ⊗ |H2,t⟩, (36)

where |Hi,t⟩ is the time-dependent environment. Then
we obtain the measured intensity of the entangled state
by tracing the full density matrix over the environment
state

ρ̃t =
2∑
a=1

⟨Ha,t|ρ̂|Ha,t⟩. (37)

Substituting (36) and (1) into (37), one obtains the mea-
sured intensity by tracing the total density matrix over
the environmental degrees of freedom

ρ̃t =
(
1 + |at|2

) 2∑
i=1

|ci|2ψ∗
i,tψi,t + 2atc1c

∗
2ψ1,tψ

∗
2,t

+c.c. (38)

This equation means that the interaction between the co-
herence state and the environment is the reason of the
decoherence. The coe�cient at = ⟨H2,t|H1,t⟩ is called
the damping factor and indicates the degree of coherence.
The cross terms c1c

∗
2ψ1,tψ

∗
2,t and its conjugate complex

in (38) disappear; when at = 0, the coherent state su�ers
a total loss of coherence. If one introduces the coher-
ence time τ , then this damping factor can be written as
at = e−t/τ . By using (6) and (38), the current is given
by
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J = ρ̃tV =
i
(
1 + |at|2

)
~

2m

2∑
i=1

|ci|2
(
ψ∗
i,t∇ψi,t

−ψi,t∇ψ∗
i,t

)
+

i~
m

|at|c1c∗2
(
ψ∗
2,t∇ψ1,t

−ψ1,t∇ψ∗
2,t

)
+ c.c. (39)

3. The current as a supercurrent

in two-condensate system

From Eq. (39), the current is seen to be expressed as a
sum of two contributions: the �rst term, which does not
include the cross term of the partial wave functions, will
be denoted by J1:

J1 =
i
(
1 + |at|2

)
~

2m

2∑
i=1

|ci|2
(
ψ∗
i,t∇ψi,t − ψi,t∇ψ∗

i,t

)
,

(40)

and the second term, which includes the cross term which
indicates the coherent e�ects, will be written by J2:

J2 =
i~
m

|at|c1c∗2
(
ψ∗
2,t∇ψ1,t − ψ1,t∇ψ∗

2,t

)
+

i~
m

|at|c∗1c2
(
ψ∗
1,t∇ψ2,t − ψ2,t∇ψ∗

1,t

)
. (41)

In terms of the partial measured intensity of the partial

wave function ρ
(i)
t , J1 is

J1 =
i
(
1 + |at|2

)
~

2m

[
|c1|2

(
ψ∗
1,tψ1,t

)
×
(
ψ∗
1,t∇ψ1,t − ψ1,t∇ψ∗

1,t

)(
ψ∗
1,tψ1,t

) + |c2|2
(
ψ∗
2,tψ2,t

)
×
(
ψ∗
2,t∇ψ2,t − ψ2,t∇ψ∗

2,t

)(
ψ∗
2,tψ2,t

) ]
. (42)

In a similar manner, J2 is also rewritten as

J2 =
i~
m

|at|
[(
c1c

∗
2ψ1,tψ

∗
2,t

ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

− c∗1c2ψ
∗
1,tψ2,t

ψ1,t∇ψ∗
1,t

ψ∗
1,tψ1,t

)]

+
i~
m

|at|
[(
c∗1c2ψ2,tψ

∗
1,t

ψ∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

− c1c
∗
2ψ

∗
2,tψ1,t

ψ2,t∇ψ∗
2,t

ψ∗
2,tψ2,t

)]
. (43)

Let us de�ne the complex variable Λ = c1c
∗
2ψ1,tψ

∗
2,t; then

Λ∗ = c∗1c2ψ
∗
1,tψ2,t, the current J2 can be rewritten as

J2 =
i~
m

|at|

(
Λ
ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

− Λ∗ψ1,t∇ψ∗
1,t

ψ∗
1,tψ1,t

)

+
i~
m

|at|

(
Λ∗ψ

∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

− Λ
ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

)
. (44)

It is convenient to write Λ = Λ1+iΛ2 and Λ∗ = Λ1− iΛ2,
where Λ1 and Λ2 are real numbers. Substituting Λ1 and
Λ2 into (44), one obtains

J2 =
i~
m

|at|
[
Λ1

(
ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

−
ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

)

+ iΛ2

(
ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

+
ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

)]

+
i~
m

|at|
[
Λ1

(
ψ∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

−
ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

)

− iΛ2

(
ψ∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

+
ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

)]
. (45)

In term of the relations

∇ ln
(
ψ∗
i,tψi,t

)
=

(
ψ∗
i,t∇ψi,t
ψ∗
i,tψi,t

+
ψi,t∇ψ∗

i,t

ψ∗
i,tψi,t

)
,

i = 1, 2, (46)

�nally, J2 can be expressed by

J2 =
i~
m

|at|Λ1

[(
ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

−
ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

)

+

(
ψ∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

−
ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

)]

+
~
m
|at|Λ2∇

[
ln

(
ψ∗
1,tψ1,t

ψ∗
2,tψ2,t

)]
. (47)

This formula shows there is a topological reason lead-
ing to the decoherence. The new parameter Λ1 can be
used to indicate the coherent degree. This parameter
also can be called damping factor, but it is very di�er-
ent from the parameter at. The parameter at relates
to the degrees of the freedom of the environment. But
from (30), the parameter Λ1 relates to the phase shift of
the partial wave functions. The parameter Λ1 is indis-
pensable to give the exact expression (47), which is es-
sential for giving the topological structure of the current.
Then the parameter Λ1 is important to the topological
structure of the current, but the parameter at has noth-
ing to do with the topological structure. In addition, we

�nd ~∇[ln
(
ψ∗

1,tψ1,t

ψ∗
2,tψ2,t

)
] is a vector, then a new U(1) gauge

potential is de�ned by

A = ~∇
[
ln

(
ψ∗
1,tψ1,t

ψ∗
2,tψ2,t

)]
. (48)

Therefore, the current J2 is
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J2 =
i~
m

|at|Λ1

[(
ψ∗
1,t∇ψ1,t

ψ∗
1,tψ1,t

−
ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

)

+

(
ψ∗
2,t∇ψ2,t

ψ∗
2,tψ2,t

−
ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

)]

+
1

m
|at|Λ2A. (49)

We assume the system is in the coherence, that is to say,
the damping factor |at| = 1. The current using the mea-

sured intensity of the partial wave function ρ
(i)
t is

J =
i~
m

(
|c1|2ρ(1)t + Λ1

)ψ∗
1,t∇ψ1,t − ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

+
i~
m

(
|c2|2ρ(2)t + Λ1

)ψ∗
2,t∇ψ2,t − ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

+
1

m
Λ2A. (50)

In order to study the current in detail, we de�ne new

charges q1 =
|c1|2ρ(1)t +Λ1

ρ
(1)
t

and q2 =
|c2|2ρ(2)t +Λ1

ρ
(2)
t

. Then the

new U(1) gauge potential is given by

Ã =
Λ2

4(q21 + q22)
(
|ψ1,t|2 + |ψ2,t|2

)A.
Based on the new gauge potential Ã, the current of the
coherent system can be expressed by

J =
i~q1
m

(
ψ∗
1,t∇ψ1,t − ψ1,t∇ψ∗

1,t

)
+

i~q2
m

(
ψ∗
2,t∇ψ2,t − ψ2,t∇ψ∗

2,t

)
+

4
(
q21 + q22

)
m

(
|ψ1,t|2 + |ψ2,t|2

)
Ã. (51)

However, we �nd that the total current can be deduced
from the following free energy:

F =

[
1

2m

∣∣∣∣(~∂k + i
2q1
c

Ãk

)
ψ1,t

∣∣∣∣2

+
1

2m

∣∣∣∣(~∂k + i
2q2
c

Ãk

)
ψ2,t

∣∣∣∣2

+V
(
|ψa,t|2

)
+

B̃
2

8π

]
, (52)

where B̃ = ∇ × Ã is U(1) gauge �eld. The potential
V (|ψa,t|2) is

V
(
|ψa,t|2

)
= −ba|ψa,t|2 +

ca
2
|ψa,t|4, a = 1, 2. (53)

It is well known that this free energy is called the
Ginzburg�Landau free energy, which is used to describe

the charged two-condensate Bose system [9]. The to-
tal current (51) of quantum coherent system is similar
to the supercurrent of the charged two-condensate Bose
system. In two-condensate superconductor, the charged
two-condensate wave functions, or charged order param-
eters, can carry the electronic charges. The interaction
of charged order parameters is mediated by the electro-
magnetic potential Ae. In this description, we �nd that
the coherent system interacting with the environment is
similar to the two-condensate superconductor. The par-
tial wave functions can be seen as the charged order pa-
rameters. The partial wave functions are weakly-coupled
because they carry the charges q1 and q2, which is dif-
ferent from the electronic charge. The interaction of the
partial wave functions is mediated by the new U(1) gauge

potential Ã, not the electromagnetic potential.

4. The symmetry of the current

and its topology

In this section, we try to study the free energy, sym-
metry and the topological properties of the current of the
coherent state. Let us de�ne the partial wave function as

ψa,t =
√
2mρξa, a = 1, 2, (54)

where the complex variable ξa = |ξa|e iθ. The modular ρ
is

ρ =
1

2

(
|ψ1,t|2

m
+

|ψ2,t|2

m

)
. (55)

By using these new variables, the Ginzburg�Landau-like
free energy of the coherent state is given as

F = ~2(∂ρ)2 + ~2ρ2
∣∣∣∣(∂k + i

2q1
~c

Ã

)
ξ1

∣∣∣∣2

+ ~2ρ2
∣∣∣∣(∂k + i

2q2
~c

Ã

)
ξ2

∣∣∣∣
+V

(
|ψa,t|2

)
+

B̃
2

8π
. (56)

It can be rewritten by

F = ~2(∂ρ)2 + ~2ρ2
(
|∂ξ1|2 + |∂ξ2|2

)
+V

(
|ψa,t|2

)
+

B̃
2

8π

+ ~2ρ2
[
i
2q1
~c

(
Ãξ1∂ξ

∗
1 −Ãξ∗1∂ξ1

)
+

4q21
~2c2

|ξ1|2Ã
]

+ ~2ρ2
[
i
2q2
~c

(
Ãξ2∂ξ

∗
2 −Ãξ∗2∂ξ2

)
+

4q22
~2c2

|ξ2|2Ã
]
.

(57)

The supercurrent of the free energy can be derived as

J = i~2ρ2
[
2q1
~c

(ξ1∂ξ
∗
1 − ξ∗1∂ξ1)
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+
2q2
~c

(ξ2∂ξ
∗
2 − ξ∗2∂ξ2)

]

+ ~2ρ2
(

4q21
~2c2

|ξ1|2 +
4q22
~2c2

|ξ2|2
)
Ã. (58)

Let ∆ =
4q21
~2c2 |ξ1|

2 +
4q22
~2c2 |ξ2|

2, the new supercurrent J̃ is
given as

J̃ =
J

~2ρ2∆
= i

[
2q1
~c∆

(ξ1∂ξ
∗
1 − ξ∗1∂ξ1)

+
2q2
~c∆

(ξ2∂ξ
∗
2 − ξ∗2∂ξ2)

]
+ Ã. (59)

To �nd the symmetry of the coherent system, a new com-

plex variable ξ̃a is de�ned by

ξ̃a =

√
2qa

~∆Qc
ξa, (60)

where the real number Q guarantees that the new partial
wave functions satisfy∣∣∣ξ̃1∣∣∣2 + ∣∣∣ξ̃2∣∣∣2 = 1. (61)

In terms of the new complex variable, the supercurrent

J̃ is

J̃ = iQ
[(
ξ̃1∂ξ̃

∗
1 − ξ̃∗1∂ξ̃1

)
+
(
ξ̃2∂ξ̃

∗
2 − ξ̃∗2∂ξ̃2

)]
+ Ã.

(62)
Next we de�ne a gauge invariant unit vector ñ:

ñ =
(
ξ̃,σξ̃

)
, (63)

where ξ̃ = (ξ̃∗1 , ξ̃
∗
2) and σ are the Pauli matrices. It is

obvious that the unit vector satis�es

ñ • ñ = 1.

Then a new vector C can be de�ned by

C = Q
j

2
+ Ã, (64)

where j = i[(ξ̃1∂ξ̃
∗
1 − ξ̃∗1∂ξ̃1) + (ξ̃2∂ξ̃

∗
2 − ξ̃∗2∂ξ̃2)]. We

add and subtract from (56) a term 1
4~

2ρ2Q2∆2j2, the
two charged free energy of the coherent state can be ex-
pressed with these new variables

F = ~2(∂ρ)2 +
~2ρ2Q2∆2

4
(∂ñ)

2

+
1

8π

[
(∂iCj − ∂jCi)−

Q

4
ñ · ∂iñ× ∂jñ

]
+ ~2ρ2∆C2 + V

+ ~2ρ2
[(

1− 2q1
~c

)
|∂ξ1|2 +

(
1− 2q2

~c

)
|∂ξ2|2

]
. (65)

Considering the London limit, we have ∂ρ = 0, and the
free energy is given by

F =
~2ρ2Q2∆2

4
(∂ñ)

2
+

1

8π

[
(∂iCj − ∂jCi)

− Q

4
ñ · ∂iñ× ∂jñ

]
+ ~2ρ2∆C2 + V

+ ~2ρ2
[(

1− 2q1
~c

)
|∂ξ1|2 +

(
1− 2q2

~c

)
|∂ξ2|2

]
. (66)

Finally, we �nd there is a stable knotted solution in coher-
ent system, which is described by the Skyme�Faddeev�
Niemi action

F0 =
ρ2~2Q2∆2

4
(∂ñ)

2
+

Q

32π
ñ · ∂iñ× ∂jñ. (67)

The knotted solution displays a O(3) symmetry in the
free energy. The knotted solution is just the nontrivial
map

ñ : S3 → S2. (68)

The boundary condition of this knotted solution is

ñ(x) → ñ0, x → ∞, (69)

where n0 is the constant vector in spatial direction. The
knotted solution has an important relation to the current
of the coherent state. It is convenient to write the cur-
rent as

J = J1 + J2, (70)

where

J1 =
~q1ρ(1)t
im

ψ∗
1,t∇ψ1,t − ψ1,t∇ψ∗

1,t

ψ∗
1,tψ1,t

+
4q21
m

|ψ1,t|2Ã (71)

and

J2 =
~q2ρ(2)t
im

ψ∗
2,t∇ψ2,t − ψ2,t∇ψ∗

2,t

ψ∗
2,tψ2,t

+
4q22
m

|ψ2,t|2Ã. (72)

Recalling the unit vector n(i), these components can be
derived as

J1 =
~q1ρ(1)t
m

ϵabn
a
(1)∂in

b
(1) +

4q21
m

|ψ1,t|2Ã (73)

and

J2 =
~q2ρ(2)t
m

ϵabn
a
(2)∂in

b
(2) +

4q22
m

|ψ2,t|2Ã. (74)

By making use of ϕ-mapping topological current theory,
the vorticity of the current is given as

Γ =

∫
Σi

(∇× J) · dS

=

∫
Σi

(∇× J1) · dS +

∫
Σi

(∇× J2) · dS. (75)

Then the curls of the currents J1 and J2 are calculated
as
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(∇× J1) =
~q1ρ(1)t
m

ℓ∑
l=1

β
(1)
l η

(1)
l δ2(1)

(
xi − zil

) dxi(1)
ds

+
4q21
m

|ψ1,t|2∇× Ã (76)

and

(∇× J2) =
~q2ρ(2)t
m

ℓ∑
l=1

β
(2)
l η

(2)
l δ2(2)

(
xi − zil

) dxi(2)
ds

+
4q22
m

|ψ2,t|2∇× Ã. (77)

Furthermore, the vorticity of the current is

Γ =
~q1ρ(1)t
m

W1 +
~q2ρ(2)t
m

W2

+
4
(
q21ρ

(1)
t + q21ρ

(2)
t

)
m

∫
Σi

(
∇×Ã

)
· dS. (78)

It is well known that the property of a supercurrent is
the magnetic �ux passing through any area bounded by
such a current is quantized. The quantization of the �ux
in the superconductor is∫

Σi

(∇×AE) · dS =
h

2e
W̃ ,

where e is the electronic charge. Similarly, we give the

�ux quantization of this new U(1) gauge potential Ã∫
Σi

(
∇× Ã

)
· dS =

h

q1 + q2
W̃ . (79)

Finally, the vorticity of the current is

Γ =
~q1ρ(1)t
m

W1 +
~q2ρ(2)t
m

W2

+
4
(
q21ρ

(1)
t + q21ρ

(2)
t

)
m

~
q1 + q2

W̃ . (80)

5. Conclusion

In this paper, the relation between the coherent quan-
tum system and the charged two-condensate system is
investigated. The new expression of the current of the co-
herent state is given based on reduced density trajectory
and ϕ-mapping topological current theory. A topological
reason leading to the decoherence is found. By de�ning a

new U(1) gauge potential Ã and new charges q1 and q2,
we �nd that the coherent system can be described by the
Ginzburg�Landau-like model with two charged Cooper
pairs. The corresponding relation between coherent sys-
tem and two-gap superconductor is shown as follows: the
partial wave functions of the coherence correspond to the
charged two-condensate wave functions; the charges q1
and q2 correspond to the electronic charges; the new U(1)

gauge potential Ã corresponds to the electromagnetic po-
tential Ae. Finally, the hidden O(3) symmetry of the
coherent state is found using Faddeev's O(3) nonlinear
σ-model and the topological properties of the knot solu-
tion are studied based on ϕ-mapping topological current
theory.
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