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The perturbation to the Noether symmetry and the Noether adiabatic invariants of discrete difference
variational Hamilton systems are investigated. The discrete the Noether exact invariant induced directly by the
the Noether symmetry of the system without perturbation is given. The concept of discrete high-order adiabatic
invariant is presented, the criterion of the perturbation to the Noether symmetry is established, and the discrete
the Noether adiabatic invariant induced directly by the perturbation to the Noether symmetry is obtained. Lastly,

an example is discussed to illustrate the application of the results.
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1. Introduction

The research on symmetries and conserved quanti-
ties of a mechanical system possesses important math-
ematical and physical significance, and is also an impor-
tant development direction in analytical mechanics. In
Refs. [1, 2] symmetries and conserved quantities of con-
strained mechanical systems have been thoroughly in-
vestigated. Moreover, symmetries and conserved quanti-
ties of more general systems (optimal control problems)
are also studied in depth [3-5]. Recently, researches
on symmetries and conserved quantities have been ex-
tended to a general time scale (including, as particular
cases, both discrete and continuous settings). Levi et al.
[6-8] first extended the Lie symmetry to discrete sys-
tems; Dorodnitsyn [9] adapted the Noether’s theory to
discrete Lagrangian system; Torres et al. [10-12] studied
the Noether symmetry theorems for an arbitrary time
scale; Shi et al. [13, 14] investigated Lie symmetry and the
Noether conserved quantities (or exact invariants) of dis-
crete non-conservative mechanical systems and discrete
difference variational Hamilton systems without pertur-
bations; based upon the property of the discrete mod-
els entirely inheriting the symmetry of the continuous
systems, Fu et al. [15] presented the Hojman conserved
quantities and Lie symmetries of discrete mechanico-
-electrical coupling systems by the Lie groups of trans-
formations of continuous systems.

As we know, even a tiny disturbance acting on the me-
chanical systems, that we can call a perturbation, may
influence the original symmetries and conserved quanti-
ties of mechanical systems. Pioneered in this area, Burg-
ers [16] proposed adiabatic invariants for a special kind of
the Hamilton systems. Perturbation to symmetries and
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adiabatic invariants play a very important role in the re-
search on the quasi-integrability of mechanical systems.
A classical adiabatic invariant is a certain physical quan-
tity that changes more slowly than some slowly-varying
parameter of the system [17]. In fact, the parameter
varying very slowly is equivalent to the action of a small
disturbance. At present, studies in this field have become
very active, and many important results have been ob-
tained [18-23]. But all these studies have focused on per-
turbation to symmetries and adiabatic invariants of the
continuous mechanical systems. Recently, Zhang et al.
[24] presented the concept of discrete high-order adia-
batic invariant, and studied the perturbation to the the
Noether symmetry and the Noether adiabatic invariant
of the general discrete holonomic system. Wang and Zhu
[25] further discussed perturbation to symmetry and adi-
abatic invariants of general discrete holonomic dynami-
cal systems on a uniform lattice. However, perturbation
to symmetries and adiabatic invariants of the discrete
Hamilton systems has never been studied so far.

In this paper, based on the concept of discrete
high-order adiabatic invariant, the perturbation to the
Noether symmetry and the Noether adiabatic invariants
of discrete difference variational Hamilton systems are
studied. The discrete the Noether exact invariant in-
duced directly by the the Noether symmetry of the sys-
tem without perturbation is given. The criterion of the
perturbation to the Noether symmetry is established, and
the discrete the Noether adiabatic invariant induced di-
rectly by the perturbation to the Noether symmetry is
obtained. Meanwhile, an example is discussed to illus-
trate the application of the results.

2. the Noether symmetry and discrete the
Noether exact invariant

For brevity of notation, we consider
-dimensional discrete difference variational

a one-
Hamil-
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ton system. The Hamiltonian of the system is
Ha(tg,ter1, Qs Qo1 Pk, Pry1) (B = 0,1,...,N = 1), ty,
gk, and py are discrete time, discrete generalized coordi-
nates, and discrete generalized momenta, respectively.

The discrete equations of motion of the system can be
written as [14]:

L(pr—1 — Prt+1) — DsHa(pr) (tks1 — tr)

— DyHa(pp—1)(tr — th—1) = 0, (1)
3(qks1 — qr—1) — DsHa(pr) (tesrr — tr)

= DeHa(pr—1)(tk — tk—1) =0, (2)
Ha(pr) — Ha(pr—1) — DiHa(er)(tri1 — te)

— DoHa(pr—1)(tk — th—1) = 0, (3)

where D; is the partial derivative of the dis-
crete function with respect to the argument j and
or = (tg, tkr1, qk, Qrt1, Pks Pk+1) represents the discrete
sequence.

We introduce the infinitesimal transformations with
respect to discrete time tj, discrete generalized coordi-
nates g, and discrete generalized momenta pj, as

ty =ty + Aty =ty + 7y (tr, iy Pk,
a5 = qx + Agi = qr, + €3 (L, Qi i)
P = P + Api = qi + ey (tes G, Pr) (4)

where ¢ is an infinitesimal group parameter, 70, £2 and
nY are the discrete infinitesimal generators. The vector
field of generators is

o, 0

X(O) :7'07 + 07_’_ —_— 5
0,d k Dty &k o P Er (5)
which can be prolonged to the two-point scheme
0
X(l) _ X(O) +7.0 + 0
0,d 0,d T Tk+1 Otprn E+1 EY
0
F N 6
77k+1 akarl ( )

The recursive and derivative operators of discrete sys-
tems for any discrete variable or function are represented
as

Ry f(zr) = f(2k1), (7)
Ddf(zk) _ R+f(2’k) - f(zk) ] (8)

U1 — i
The the Noether symmetry is an invariance of the
Hamiltonian action functional under the infinitesimal
transformations.  Then the requirement of the the
Noether symmetry of the discrete difference variational
Hamilton system gives

Ha(px)Da(r0) + XS [Ha(or)] — 2 (prs1 + pr) Da(€D)

+ 3 (k41 + ar) Da(1) + Da(Ghy) =0, 9)
where G%;;, = G%1.(tk, gk, pr) is a discrete gauge function.
Criterion 1. If a discrete gauge function G%, ezists

such that the infinitesimal generators 77, £2 and 0\, satisfy
Eq. (9), the invariance is the Noether symmetry of the

discrete difference variational Hamilton system (1), (2)
and (3).

Equation (9) is called the discrete the Noether identity
of the discrete difference variational Hamilton system (1),
(2) and (3).

Theorem 1 [14]. For the discrete difference varia-
tional Hamilton system (1), (2) and (3), if the infinitesi-
mal generators 7, €2 and ) of the the Noether symmetry
and discrete gauge function G, satisfy the discrete the
Noether identity (9), the the Noether symmetry of the
system can induce the discrete the Noether ezact invari-
ant

Inoa = 7o (tr — ti—1)Da[R_Ha(px)] (10)
+&Q(tk — tr—1)Da[R_Ha(pr)]
+mp(ti — ti—1)De[R—Ha(x)] + T0 R— Ha(r)

1

— L(pr—1 + )& + L(gh—1 + q)np + G = const.

3. Perturbation to the Noether symmetry and
discrete the Noether adiabatic invariant

Small force acting on the discrete difference variational
Hamilton system may result in a small change in its sym-
metries, i.e. perturbation to symmetries. The conserved
quantity associated with the symmetries, under a corre-
sponding change, is an adiabatic invariant. In analyti-
cal mechanics, we study perturbation to symmetries and
adiabatic invariants of mechanical systems based on the
concept of high-order adiabatic invariant. According to
the concept of adiabatic invariant [17], for the discrete
difference variational Hamilton system, we have

Definition. If Lz’d(tk, tkt1, Gk, Qk+1, Pks Pk+1, 6) 18
a physical quantity including € in which the highest
power is z in a discrete difference variational Hamil-
ton system, and its derivative with respect to discrete
time t is directly proportional to c**1, I.q is called
a z-th order adiabatic invariant of the discrete differ-
ence variational Hamilton system. Definition. If
L. a(tesths1s Gk, Qer1, Py Pit1,€) 45 a physical quantity
including € in which the highest power is z in o discrete
difference variational Hamilton system, and its derivative
with respect to discrete time ty is directly proportional to
g*tl, I, q is called o z-th order adiabatic invariant of the
discrete difference variational Hamilton system.

Suppose the discrete difference variational Hamilton
system (1), (2) and (3) is perturbed by small quan-
tity eWa(t, tkr1, Gy et 1, P, Pra1) = eEWal(pr), then we
have the following total variation of corresponding dis-
crete Hamiltonian action functional:

N-1
ASq + Z eWaler) (tee1 — te) Ag
k=0
N—1
— Z eWaler)(qr+1 — qr) Aty = 0, (11)
k=0
where A is a total variation symbol, and
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N-1
= Z 2 (Prt1 + k) (@1 — ar) (12)
-0

N—1
— > Haltk, ths1s Gy @1, Py Pros) (Bt — 1)
=0

From (11), using the similar deduction in [14], we ob-
tain the discrete equations of motion of the discrete dif-
ference variational Hamilton system perturbed by small
quantity eWq(pg):

L(pr—1 — Prt1) — DsHa(pr) (tks1 — tr)
— DyHy(pr—1)(te — tp—1)

+ eWa(er)(tgr1 — tr) =0, (13)
5(@r1 — qe—1) — DsHa(pr) (ter1 — tr)

— De¢Hqa(p—1)(tx — ti—1) =0, (14)
Ha(pr) — Ha(pr-1) — DiHa(pr)(tkt1 — tk)

—DoHy(pr—1)(tr — tr—1)

— eWaler)(gr+1 — aqx) = 0. (15)

Because of the action of eWy(py), the original symme-
tries and invariants of the system may vary. Assume that
the variation is a small perturbation based on the sym-
metrical transformations of the system without pertur-

bation, and 7 (tk, gk, Pk), Ek(tk, qr, pr) and ny(tk, qr, pr)
express the generators of infinitesimal transformations af-

ter being perturbed, then
Tk:7£+57,i+527,?+...,
Ep =€)+ et} + %62 +
M =g+ en S+ (16)
The infinitesimal transformations become
th =t + Aty =ty + e7x(tr, qr, Pk,
Qi = qr + Aqr = g + €&k (ks @i Pk )
Pk = Pk + Apr = pr + enw(tr, g, Pk)- (17)
According to the the Noether symmetry theory, the
the Noether identity of the discrete difference variational

Hamilton system perturbed by small quantity eWq (k)
becomes

Ha(o1)Da (i) + X§V [Ha(pr)] = (1 + pi) Dalér)

+ 5 (qht1 + qx)Da(ne) — eWaler)[Ek — Dalqr) k]

+ Dd(GNk) =0, (18)
where
M _ 0 0 0
X
M 815 +§k +77ka +Tk+16tk,+1
+¢& g + 7 (19)
" gk s P41’

and Gnr = Gni(ti, gk, pr) is a gauge function.
being perturbed, the gauge function comes into

Gne = G%y +eGhp + G + - .. (20)
Substituting (16) into (19), we have

x{P=emx( (m=0,1,...,2), (21)
where
0 0 0
X(l) — f”/ m m
md = Tk g + & dar + ' e + Thtl Dtrin
e B (22)
h aqk:-l-l s 8pk+1 .

Substituting (16) into (18) noticing (19)—(2
making the coefficients of €™ equal, we obtain

Ha(pr) Da(ri) + X4 [Ha(on)] (23)
— 2(Prt+1 +pr)Da(&") + 5 (@rt1 + qx)Da(ny)

— Walew) (67" = Dalqr)m '] + Da(GR
m—1 m—1

when m = 0, we note that 7;"~' = &' ' ="' =0
holds, then Eq (23) turns into Eq. (9).

Criterion 2. For the discrete difference variational
Hamilton system (1), (2) and (3) perturbed by small
quantity eWa(pr), if the discrete gauge function G, ex-
ists such that the infinitesimal generators )", & and 1"
satisfy (23), the corresponding variety of the the Noether
symmetry is called the perturbation to the the Noether
symmetry.

2), and

k) =0,

Equation (23) is the determining equation of the per-
turbation to the the Noether symmetry of the discrete
difference variational Hamilton system (1), (2) and (3).

Theorem 2. For the discrete difference wvaria-
tional Hamilton system (1), (2) and (3) perturbed by
small quantity eWq(px), if the infinitesimal generators
7 Etand 0, and discrete gauge function GY, satisfy
the determining of Eq. (23), the perturbation to the the
Noether symmetry of the system can induce a z-th order
discrete adiabatic invariant

Ipa = em{nm o) DaR_Ha(0)]
+ & (te — te—1)Da[R_Ha(pr)]

+ 0 (tk — te—1)De[R-Ha(pr)] + 71" R— Ha (k)

I I YN L Gm}

(m=0,1,...,2). (24)

Proof: Using representations (7), (8) and (22), the

expansion of (23) gives

Ha(pr)Da(ri™) + X\ [Ha(o)]

— 3 (Pr+1 + Pr)Da(&") + 5(qks1 + @) Da(ng’)

d(‘pk) |:

Zl_l_Dd(Qk) m— 1] —|—D ( m )
)T/?% — ", mOHa(er) | m OHa(er)

= 1Pk : Tk
al tet1 — th Fooot, M Ot



28

M.-J. Zhang, J.-H. Fang

m OHa(r) OHa(yk) | . OHa(pr)
& Oqx &k OQr+1 1k Opk,
OHa(pr) &1 &
+77k+1T — 5 (Prs1 + pr) tkill — t];
M1 — Mg
+ 5 (qrt1 + %)ﬁ
— Walew) (€7 " = Dalqr)m" '] + Da(G.)
_ mOHalpr) | i~ tr—1 OHalpk-1)
R ot M tear — te oty
+Tde(<Pk—1) ~_m Halek)
k bty — tg k tpy1 — tg
+£maHd(90k) Lem —tg—1 OHa(pr-1)
A b tk+1 — g Oqr,
1 Pe18E 1 PRy
Pthtr —te  Plper — i
_’_nmaHd(@k) + tk - tk 1 aHd((Pk: 1)
" o i tey1 — Lk Opk
1 Qe 1 e
Pther —te  Plper — i
m OHa(or) otk —the1 OHa(pr—1)

=+ 7
M Ot M otesr — te Oty

OHa(pr)  mte — tk1 OHa(r-1)
k41 M terr — te Iqx.

+&

+1 0Hq (@k) otk — te—1 OHa(pr-1)
Tt Opr+ Mt — Opy,
ygm Hd(@k) __mHalpr-1)
Ml —te F teer —
L Pe1&yt ;pkﬂfﬁl 1 Pe€ria
Ptppr — b Pt —te e —tk
L1 PR e 1 Qe1TE
thpr —te Pty — bk e —tk
Ak qeNg
Y = j o+ Da(G)
Tht1 — th Tyt — th
— Walew) €7 = Dalar)m" ]
_m OHa(pk) | th —tk—1 OHa(pr—1)
b oty Tht1 — tk oty
Ha(pr—1)  Ha(ew) ]
tet1 —tk thyr — t
+£Tﬂ aHd(SDk) tp — tp—1 6—E[d(ﬁpkfl)
F dqr tpt1 — th Oqk
1 Pl Phi ]
Pthar —te Ztpe1 — bk

s |:8Hd(g0k) ty — th—1 OHa(pr—1)
k Opk tetr —te  Opg
! C]k+1 1 qk—1
thar —te Ptper — i
OHq(pr—1)
+D |: m t _ [
a | (te —te—1) Bty
OHq(pr—1)
+ m t _t _ P S
gk ( k k 1) an
OH4(pr—1)
+ Mty )T
e (b — th—1) Ok

+ 170 Ha(pr-1) — 5(Pr—1 + pr)&"

+ 3 (qr—1 + qu)np* + G

— Walew) (&7 " = Da(q)m* '] = 0.

Using (13)—(15), from (25), we obtain

0H, _
Dd{sm [T,:”(tk - tk—l)ida(f: 1)
(g, — OHa(pr-1)
+ &0 (e — 1) Dax
OHq(pr-1)

+ i (te — th—1) O

gk 4 pE @kﬁwwm+amﬂ

= Dd{sm [T]:n(tk — tkfl)D2<R,Hd((pk))

+ &5 (te — th—1)Da(R-Ha(pk))

+ 0" (tk — te—1)De(R—-Ha(px)) + 7" R—Ha(#k

—Hml+mﬁﬁ+ﬂ%1+%M?+@hH

= DqlNza
= erfewao B (g
k+1 k
+ Wa(or) [E77 = Dalge) 1]}
—c {fewd(gok)[ — Da(qr)"]
+ Waler)[€7 " — Dalar)7)" 1]}
—* M Wa(pr) €7 — Dalqr) 7).

+ 7 Ha(pr-1)

(25)

)

(26)

It shows that Dqlny.q is directly proportional to 1,
s0 Inza is a z-th order adiabatic invariant of the dis-
crete difference variational Hamilton system, which can
be called the discrete the Noether adiabatic invariant.
When z = 0, which mean that eWq(py) vanish, the sys-

tem becomes the one without perturbation.

Then the
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discrete the Noether adiabatic invariant (24) turns into
the discrete the Noether exact invariant (10).

4. An example

Take the Emden equation to illustrate the application
of the above results. The discrete Hamiltonian of the
system and its recursive operator are

1Pk + Pk

Ha(pr) = 28, T2 + ﬁ(ti+lq2+l +thap),  (27)
2 2
R_Ha(px) = Ha(pr-1) = ;]z%if]gf_ll
oo (Bl + ), (25)
and the system is perturbed by the small quantity
Walpr) = dk+1Pk+1 — 4kPk (29)

E3(]ktk — Qrtey1 — 2kt
Let us study the perturbation to the the Noether symme-
try and the the Noether adiabatic invariant of the discrete
difference variational Hamilton system.

We calculate the D;Hq(pr) (j =1,2,3,4,5,6) as

7 tk(p%_H + pZ)

Dy Hqa(pr) = + trqp,

(tFy +1) 0 °

trr1(PF 41 +P7) 6
DyHa(pr) = ——5 55— + ttkt1Qps1s

e et
DSHd(<Pk) = %tk(ﬁ;a D4Hd(90k) = %tk+1q;3+17

Pk Pk+1
DsHy(or) = 57—, DeHa(or) = 5—5-(30)

i +17 i + 13

Firstly, we seek the discrete the Noether exact invari-
ant. Suppose that the generators 70, £ and 1)) are linear,
i.e.

7(tk, @ pr) = City + Caqy + Cspi + Cu,
& (tk, qr, i) = Cstr + Coqr + Crpy + Cs,
N (tr, @k, ) = Cotr + Croqx + Cr1pr + Cha,

where C1—-C'2 are constants.
Substituting (30) and (31) into the the Noether iden-
tity (9) of the system without perturbation, we have
[ 1P +pi 1

S -+ o) Dated)

(31)

2 2
+[atua - E T o
(tk+1 + tk)Q
tey1(Phgy +Pi>] 0

+ |:1‘tk+lqg+1 e 3 Tk+1
¢ (thiq +12)°

DR

2 540 2 5 0
+ 560k + 3thr1qr4 18541 T 2 442
k+1 T U

0
Pr+1Mg 41

2ot — Y(prt1 + pr)Da(€))

+ 3(gh41 + ar)Da(n) + Da(GRyy,) = 0. (32)
It follows that when
T (b Qs DR) = 2tk, €tk Qs P) = — s,
M (tk, Q> Pk) = Prs (33)
the function
Gk = —arpk (34)

satisfies the the Noether identity (9). According to Theo-
rem 1, the discrete difference variational Hamilton system
has the following discrete the Noether exact invariant:

(P +Pi—1) 265 (6 — tim1) (P + PE_1)
b+ iy (th +15_1)°

(b = te—1 )Pk
2+t

Ino,a =

+ + Lteti_1 (trap + te-1qp_y)
+ 2 (pk—1qk + Prqr—1) = const. (35)
Secondly, we seek the first order discrete the Noether

adiabatic invariant. We also suppose that the generators
3, & and i} are linear, i.e.

Tty @y pi) = City + Chqr + Clpr, + C4,
6[1(1;]% qkapk) = Cétk + Cé,Qk + C’;pk + Cé7
M (ti, @, p) = Chtr + Clogr + Clipk + Cla,

where C{—C1, are constants.

Substituting (30), (31) and (36) into the determining
Eq. (23) of the perturbation to the the Noether symme-
try of the system, we have

[1pi+1 + 1},
2 p
2 tk+1 +

(36)

1
+ 5@ aata + )| Datrd)

tr (P g + pi)] 1

it ;
¢ (i +17)°

tes1(Phiy +PZ)] 1 1

+ [1tk+1qg 1 Thi1 + StRaRER
et =T e [Tt

Pk+1771£+1
o + 13

2 5 1 pkﬂ/ﬁ
+ 3te 1 Qra1&her + 2 +

T
— 2(pr+1 + pe)Da(éy) + 2arsr + ar)Da(ny)

qk+1Pk+1 — 4kDPk
3qrtr — Qrter1 — 2qrt1te

(€} — Da(qr) 73]

+Da(Glyy,) = 0. (37)
It follows that when
7 (ke e k) = 2ty & (ks Qs DR) = — s
Motk Q> PR) = Prs (38)
the function
Gk = —2akpk (39)

satisfies the determining Eq. (23) of the perturbation to
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the Noether symmetry. According to Theorem 2, the
discrete difference variational Hamilton system has the
following first order discrete the Noether adiabatic in-
variant:

; [tk(pZ+Pi1) 267 (tr, — te—1) (D} + Pp_1)
Ni,d = -
th+ iy (7 +13_,)?
(tr — tr_1)p;
ere ko %tktkfl(tqu + tkflql?—l)
kT lko1
+ 2 (Pr—14k +kak—1)} (1+¢) — eqrpr- (40)

Further we can obtain more high-order discrete adiabatic
invariants. In addition, it is worth noting that there are
many calculations above, which can be also done in an
automatic way using a computer algebra system stated
in Refs. [26, 27].

5. Conclusion

The perturbation to the the Noether symmetry and
the the Noether adiabatic invariants of discrete difference
variational systems are studied in this paper. We ob-
tain the discrete the Noether adiabatic invariant induced
directly by the perturbation to the Noether symmetry
of the system. When z = 0, this means that eWq(¢x)
vanish, the system becomes the one without perturba-
tions, and the discrete the Noether adiabatic invariant
will turn into the discrete the Noether exact invariant
(i.e. the so-called discrete the Noether conserved quan-
tity in Ref. [14]) naturally. The results of this paper
have important significance for further study on the dis-
crete mechanical systems and symmetrical perturbation
theory.
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