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Exact Solutions and Localized Structures

for a (3+1)-Dimensional Burgers Equation
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A (3+1)-dimensional Burgers equation is studied by the singular manifold method. By choosing di�erent
seed solutions, auto-Bäcklund transformation, the Cole�Hopf transformation and a functional separation exact
solution containing two low dimensional arbitrary functions are obtained for the equation in question. Some
interesting localized coherent structures are given and their interaction properties are numerically studied. Some
new nonlinear phenomena are reported.
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1. Introduction

The solution of the form

u = f(w), w = a(x) + b(t), (1)

for a given nonlinear partial di�erential equation (PDE),
say, in two independent variables, is called the functional
separation solution [1]. The classical additive separable
solution u = a(x) + b(t), or product separable solution
u = a(x)b(t), are particular cases of functional separa-
tion. A simple particular case of (1) is the travelling
wave solution, which is very well understood and hence
omitted. There are a few papers coping with the di-
rect method based on the general ansatz (1) [2�5] to
consider the functional separable solutions of nonlinear
PDEs. From the point of view of symmetry group, two
methods have been proposed to study the compatibility
of the ansatz (1) and the equation in question. One is the
nonclassical method [6] where three di�erent invariant
surface conditions are used to characterize the functional
separable solutions. The other is the generalized condi-
tional symmetry approach based on the ansatz (1) [7].
The idea of functional separable is further developed by
considering a (3+1)-dimensional Burgers equation of the
form

ut + 2uuy + 2vux + 2wuz + uxx + uyy + uzz = 0,

ux = vy, uz = wy, (2)

which has been given by Ying and Lou [8], and then reob-
tained by Dai et al. [9] from the invertible transformation
of the heat conduction equation. Although its physical
applications has not been found, the exact solution struc-
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ture of Eq. (2) is studied by several authors [10]. Their
results indicate that Eq. (2) is a solitary equation. In
this paper, we get an auto-Bäcklund transformation and
the Cole�Hopf transformation of Eq. (2) by the singular
manifold method [11, 12]. Under the help of the func-
tional separation method, an exact solution containing
two arbitrary functions is obtained for the equation in
question. On the basis of the exact solution, some inter-
esting localized coherent structures are given and their
interaction properties are numerically studied.

2. Some properties of the solution for Eq. (2)

According to the singular manifold method [11, 12], we
truncate the Painlevé expansion of Eq. (2) at the constant
level term

u = φ−1u0 + u1,

v = φ−1v0 + v1,

w = φ−1w0 + w1, (3)

where φ is the singular manifold, and {u1, v1, w1} is an
arbitrary seed solution of Eq. (2). Substituting Eq. (3)
into Eq. (2) and equating the coe�cients of like powers
of φ yield

u0 = φy, v0 = φx, w0 = φz, (4)

where φ satis�es the equation

φt + 2u1φy + 2v1φx + 2w1φz

+φxx + φyy + φzz = 0, (5)

which is called the singular manifold equation. Equa-
tions (3), (4) and (5) constitute an auto-Bäcklund trans-
formation for Eq. (2) in terms of the singular manifold φ.
If we take u1 = φ, v1 = ∂−1

y φx, w1 = ∂−1
y φz, then

(20)
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u =
φy

φ
+ φ, v =

φx

φ
+ ∂−1

y φx, w =
φz

φ
+ ∂−1

y φz,

(6)
with φ satisfying

φt + 2φφy + 2(∂−1
y φx)φx + 2(∂−1

y φz)φz

+φxx + φyy + φzz = 0. (7)

Equations (6) and (7) are another auto-Bäcklund trans-
formation for Eq. (2). If we take u1 = 0, v1 = 0, w1 = 0,
the Cole�Hopf type transformation or hetero-Bäcklund
transformation

u =
φy

φ
, v =

φx

φ
, w =

φz

φ
, (8)

where φ satis�es

φt + φxx + φyy + φzz = 0, (9)

is obtained for (3+1)-dimensional Burgers Eq. (2). If we
take

u1 = u1(y, t), v1 = v1(x, z, t), w1 = w1(x, z, t),

(10)

with u1 satisfying (1+1)-dimensional Burgers equation

u1t + 2u1u1y + u1yy = 0, (11)

and v1 and w1 being arbitrary functions of indicated vari-
ables, Eqs. (3), (4), (5) and (11) with (10) constitute an-
other new Bäcklund transformation for Eq. (2). Now, we
solve the last new Bäcklund transformation. After care-
ful analysis, a functional separation solution follows from
Eq. (5)

φ = f(y, t)g(x, z, t) + h(x, z, t), (12)

with f satisfying the linear equation

ft + 2u1fy + fyy = 0, (13)

and g, h being arbitrary functions of indicated variables,
while v1 and w1 satisfy the following constraint condition

2gxv1 + 2gzw1 = −(gt + gxx + gzz),

2hxv1 + 2hzw1 = −(ht + hxx + hzz). (14)

Thus, we obtain an exact solution with two arbitrary
functions for the Burgers Eq. (2)

u =
fyg

fg + h
+ u1,

v =
fgx + hx

fg + h
+ v1,

w =
fgz + hz

fg + h
+ w1, (15)

where f , g, h, u1, v1, and w1 are some functions as men-
tioned in Eqs. (10)�(14).

3. Localized coherent structures and their
interaction properties of Eq. (2)

The solution generated this way involves two arbitrary
functions of space and time variables without any restric-
tion. This implies that we can study a large diversity
of solution structures for the (3+1)-dimensional Burgers

Eq. (2) by selecting appropriately these arbitrary func-
tions in Eq. (15). It is necessary to point out that the
(3+1)-dimensional Burgers Eq. (2) possesses some spe-
cial types of localized coherent structures, say, for the
following potential �eld:

U ≡ ux =
fy(gxh− ghx)

(fg + h)2

≡ (ln(f(y, t)g(x, z, t) + h(x, z, t)))xy, (16)

rather than the physical �eld u or the potential �elds v
and w themselves. In what follows, several interesting
cases are considered.
First, we take the solution of Eq. (11) u1 = C, an

arbitrary constant. Equation (13) has the solution

f = exp
(
l1y − (2Cl1 + l21)t

)
+ exp

(
l2y − (2Cl2 + l22)t

)
. (17)

Case 1. g = 1, h = tanh(k1x+n1z−ω1t)+tanh(k2x+
n2z − ω2t) + A. Let us note that ki, li, ni, ωi and etc.
are all arbitrary constants throughout the paper, unless
otherwise stated. It follows from Eq. (16) that

U =
[
ln
(
exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)

+ tanh(k1x+ n1z − ω1t)

+ tanh(k2x+ n2z − ω2t) +A
)]

xy
. (18)

In order to see the structure of Eq. (18), we draw its time
evolution plots at z = 0, and t = −5, 0, 5, respectively in
Fig. 1. The parameters are k1 = 1, k2 = 2, l1 = 1, l2 = 2,
n1 = 1, n2 = 2, ω1 = 1, ω2 = −1, A = 4 and C = 1,
which are valid throughout the �gures, unless otherwise
explained. It is easily found that this is a two-dromion-
-like structure and their interaction is inelastic.

Fig. 1. The evolution of two dromions-like for Eq. (18).

Case 2. g = 1, h = sech(k1x+n1z−ω1t)+ sech(k2x+
n2z − ω2t) +A. From Eq. (16), one has

U =
[
ln
(
exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)

+ sech(k1x+ n1z − ω1t)

+ sech(k2x+ n2z − ω2t) +A
)]

xy
, (19)

whose time evolution is depicted in Fig. 2. The four
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dromions-like solutions are divided into two groups, and
each group is two. Its evolution graphs show the nonelas-
tic property of interactions with new features. Two
groups are all inelastic after interaction! In a disper-
sive long wave system [13], we �nd a multi-dromion-like
structure solution whose interaction feature is that the
one is elastic and the other is nonelastic after interac-
tion of two groups. In a (2+1)-dimensional Burgers [14],
a multi-dromion-like structure solution possesses the fea-
ture that two groups are all elastic after interaction.

Fig. 2. The evolution of four dromions-like for
Eq. (19).

Case 3. g = 1, h = tanh(tanh k1x + n1z − ω1t) +
sech(tanh k2x+ n2z − ω2t) +A.
In this case, we obtain

U =
[
ln

(
exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)

+ tanh(tanh k1x+ n1z − ω1t)

+ sech(tanh k2x+ n2z − ω2t) +A
)]

xy
, (20)

whose evolution is drawn in Fig. 3. From the �gures one

Fig. 3. The evolution graphs of (20) at z = 0.

can clearly see the process of creation and annihilation of
the dromion-like structure. Let us note that when t > 0,
the direction of dromion-like structure is in opposition to
that of t ≤ 0. In creation and annihilation phenomenon
of the dromion-like structure for a Melnikov equation [15]
and a restricted dispersive long wave system [16], the

Fig. 4. The evolution of three dromions-like for
Eq. (20) at x = 0.

direction of dromion-like structure is unchanged. It is
interesting to note that Eq. (20) at x = 0 is a three-
-dromion-like structure. In order to see this, its evolution
graphs are plotted in Fig. 4. The interaction of three
dromions-like is inelastic.
Case 4. g = sech(k1x+n1z−ω1t)+ sech(k2x+n2z−

ω2t), h = A. It follows from Eq. (16) that

U =
[
ln
((

exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)
)

×
(
sech(k1x+ n1z − ω1t)

+ sech(k2x+ n2z − ω2t)
)
+A

)]
xy
, (21)

which is a two-dromiom-solito�-like structure, and its
evolution is shown in Fig. 5, which indicates that their
interaction is inelastic because their directions are all
changed after interaction.

Fig. 5. The evolution of Eq. (21).

Case 5. g = exp(tanh(kx + nz − ωt)), h =
exp(tanh(k1x+n1z−ω1t))+exp(tanh(k2x+n2z−ω2t))+
A. From Eq. (16), we have

U =
[
ln
((

exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)
)

× exp(tanh(kx+ nz − ωt))

+ exp(tanh(k1x+ n1z − ω1t))

+ exp(tanh(k2x+ n2z − ω2t)) +A
)]

xy
. (22)

This is a two-dromion-like structure (with opposite direc-
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Fig. 6. The evolution of Eq. (22).

tion) structure, whose interaction is made out in Fig. 6
with k = 1, n = 2 and ω = 1. We see that their ampli-
tudes are changed after interaction.

Case 6. g = exp(tanh(kx + nz) − ωt), h =
exp(tanh(k1x+n1z)−ω1t)+exp(tanh(k2x+n2z)−ω2t)+
A.

From Eq. (16), one has

U =
[
ln

((
exp(l1y − (2Cl1 + l21)t)

+ exp(l2y − (2Cl2 + l22)t)
)

× exp(tanh(kx+ nz)− ωt)

+ exp(tanh(k1x+ n1z)− ω1t)

+ exp(tanh(k2x+ n2z)− ω2t) +A
)]

xy
, (23)

whose time evolution is accounted for in Fig. 7. From
these �gures, we �nd that two nonlinear phenomena have
taken place. When t < 0, the dromion-like structure cre-
ates because its amplitude is increasing with the time.
When t ≥ 0, one dromion-like structure is �ssioned into
three, which propagate then steadily. The combination
phenomenon of creation and �ssion in nonlinear evolu-
tion equation has not yet been reported previously in the
literature to our knowledge.

Fig. 7. The evolution graphs of (23).

Now, we take the solution of Eq. (11) u1 = l tanh(ly−
λt) + λ/(2l) with l ̸= 0, λ being two arbitrary constants.
Then Eq. (13) has the solution

f = a tanh(ly − λt) + b, (24)

where a and b are arbitrary constants. Several interesting
cases are considered.
Case 7. g = tanh(kx + nz − ωt) + c, h = tanh(k1x +

n1z − ω1t) + tanh(k2x+ n2z − ω2t) +A.
It follows from Eq. (16) that

U =
[
ln
(
(a tanh(ly − λt) + b)

× (tanh(kx+ nz − ωt) + c)

+ tanh(k1x+ n1z − ω1t)

+ tanh(k2x+ n2z − ω2t) +A
)]

xy
. (25)

Although the parameters a, b, c, and A are arbitrary,
they should be taken under the condition that U has no
singularity. The evolution of Eq. (25) is shown in Fig. 8
with the parameters a = 1, b = 2, c = 2, l = 2 and
λ = −1, which are valid in the following �gures, unless
otherwise explained. It is found from the graphs that two
dromions-like �ssioned into three �rst and then fused two.

Fig. 8. The evolution of Eq. (25).

Case 8. g = tanh(kx+nz−ωt)+c, h = tanh(tanh k1x+
tanhn1z − ω1t) + tanh(tanh k2x+ tanhn2z − ω2t) +A.
In this case, we have

U =
[
ln
(
(a tanh(ly − λt) + b)

× (tanh(kx+ nz − ωt) + c)

+ tanh(tanh k1x+ tanhn1z − ω1t)

+ tanh(tanh k2x+ tanhn2z − ω2t) +A
)]

xy
, (26)

whose evolution is explained by Fig. 9. One can easily see
that one dromion-like �ssioned into three �rst and then
fused one. It is interesting to see that in opposition to
case 7, the dromion is identic before and after interaction.
Case 9. g = tanh(kx+nz−ωt)+c, h = tanh(sechk1x+

sechn1z − ω1t) + tanh(tanh k2x+ tanhn2z − ω2t) +A.
Now, one has

U =
[
ln
(
(a tanh(ly − λt) + b)

× (tanh(kx+ nz − ωt) + c)

+ tanh(sechk1x+ sechn1z − ω1t)

+ tanh(tanh k2x+ tanhn2z − ω2t) +A
)]

xy
. (27)

Its evolution property is displayed in Fig. 10, which indi-
cates that one dromion-like structure �ssioned into two
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Fig. 9. The evolution of Eq. (26).

Fig. 10. The evolution of Eq. (27).

�rst and then fused one, and the dromion is identic before
and after interaction.
Case 10. g = tanh(kx + nz − ωt) + c, h =

tanh(sechk1x + sechn1z − ω1t) + tanh(sechk2x +
sechn2z − ω2t) +A. It follows from Eq. (16) that

U =
[
ln

(
(a tanh(ly − λt) + b)

× (tanh(kx+ nz − ωt) + c)

+ tanh(sechk1x+ sechn1z − ω1t)

+ tanh(sechk2x+ sechn2z − ω2t) +A
)]

xy
. (28)

It is surprising that Eq. (28) is a single dromion-like
structure and can propagate steadily. Its structure is
the same as the �rst one of Fig. 10.

4. Conclusion and discussion

The property of the solution for the (3+1)-dimensional
Burgers Eq. (2) has been in detail studied by using the

singular manifold method. An auto-Bäcklund transfor-
mation, a Cole�Hopf type transformation and a func-
tional separation exact solution containing two low di-
mensional arbitrary functions are obtained. On the basis
of the exact solution, some interesting localized coher-
ent structures are revealed. Some nonlinear phenomena,
such as elastic and inelastic interaction, creation and an-
nihilation phenomenon, �ssion and fusion phenomenon,
with new properties are detected. It is worth studying
further whether Eq. (2) has solutions other than Eq. (15).
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