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Fermionic Mediated E�ective Interaction

for the Two-Dimensional Bose�Fermi Mixtures

under Arti�cial Magnetic Field
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The strongly interacting bosonic and non-interacting fermionic mixtures of diluted gases are studied. An
arti�cial magnetic �eld is introduced in theory by imposing a Peierls phase shift on the wave functions of the
constituents. A highly nontrivial limit of the quantum-Hall limit is achieved which provides oscillations e�ects
of the fermion mediated interaction between bosons. In consequence the e�ective interaction between bosons
can change the magnitude and sign. This provides possible explanations of the bosonic coherence loss observed
experimentally in the �time of �ight� and �peak width� experiments.
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1. Introduction

Direct studies of a charged particle moving in a mag-
netic �eld within the dilute gases con�ned in optical lat-
tices seemed to be intrinsically precluded because of its
neutrality. Recently, the observation of a great variety
of fundamental phenomena i.e. quantum-Hall e�ects be-
come possible owing to the advancements of various ex-
perimental techniques [1�3]. In the frame of reference
rotating about the z-axis with angular velocity Ω the ki-
netic term in Hamiltonian is equivalent to that of a par-
ticle of charge Q experiencing a magnetic �eld B with
QB = 2mΩ , where m is the mass of the particle [4].
This connection shows that the Coriolis force in the ro-
tating frame plays the same role as the Lorentz force
on a charged particle in a uniform magnetic �eld [5, 6].
The above setting comes with limitations because large
magnetic �elds f ≡ ma2Ω/π~ (angular momentum) are
required to make possible the study of poorly explored
bosonic states in case when f ≡ p/q (p and q is the ratio
of atom number to the number of �ux quanta, respec-
tively) is a rational number.
Current experiments [7�11] on trapped mixtures of the

atomic Bose�Fermi (BF) and Bose�Bose gases show that
the presence of a relevant fraction of one modi�es the
quantum phase transition occurring in the other induc-
ing a signi�cant loss of coherence. These observations
are supported by a theoretical description that includes
the multiband virtual transitions [12], di�erent masses of
strongly interacting particles [13] and numerical calcula-
tions [14]. The density�density (DD) interaction between
di�erent species can be repulsive or attractive and is pro-
duced by changes of one species density that induce a
modulation of another. Therefore the dynamics underly-
ing the phase transitions in the BF mixtures is produced
by the feedback of the density perturbation and a shift
of the inter-bosonic potential occurs, that changes the

original interaction between them [15] providing various
novel phases [16].

2. Model

In the present paper, motivated by recent experiments
done by Lin's group et al. [17] which engineered a Hamil-

tonian with a spatially dependent vector potential Ã thus
successfully producing B̃ = ∇×Ã, we calculated the form
of the e�ective inter-bosonic potential when a synthetic
magnetic �eld (SMF) is applied to neutral gaseous Bose�
Fermi mixtures. We predict that the fermion-mediated
e�ective interaction between bosons has a complicated
pattern of the frequency dependent magnitude. More-
over, the SMF renders the inter-bosonic potential oscil-
latory with sign change, thus switching it between re-
pulsive and attractive. As a consequence the resonances
appear and BF mixture that enters the quantum-Hall
regime displays surprisingly complex dynamics unreach-
able in conventional solid state physics. We expect that
our theoretical results open up the experimental stud-
ies [18] of the renormalized interaction energies in stable
many-body phases with strong correlations and their dy-
namical properties.
Restricting our analysis to the lowest energy band of

a square optical lattice in synthetic magnetic �eld, the
Bose�Fermi quantum gaseous mixture can be modeled
via the following Hamiltonian [19]:

H =
Ub

2

∑
i

nbi(nbi − 1)−
∑
⟨i,j⟩

tbijb
†
i bj − µb

∑
i

nbi

−
∑
⟨i,j⟩

tfijc
†
i cj − µf

∑
i

nfi + Ubf

∑
i

nbinfi, (1)

where b†i (c
†
i ) and bj (cj) stand for the bosonic (fermionic)

creation and annihilation operators; nbi = b†i bi (nfi =

(1308)
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c†i ci) measures the corresponding boson (fermion) num-
ber on the site i, Ub > 0 is the on-site repulsion and
µb (µf ) stands for the chemical potential for bosons
(fermions). The DD interaction between the bosonic and
non-interacting, spin-polarized (collisions in the s-wave
channel are forbidden by their statistics), fermionic
atoms is denoted by Ubf and depends, on boson to
fermion mass ratiomb/mf . Here, ⟨i, j⟩ identi�es summa-
tion over the nearest-neighbor sites. Furthermore, tb (tf )
sets the kinetic energy scale for bosons (fermions).

A synthetic magnetic �eld B = ∇ × A(r) enters the
Hamiltonian Eq. (1) through the Peierls phase factor ac-

cording to tij → tij exp
(

2π i
Φ0

∫ ri

rj
Adl

)
, where Φ0 = hc/e

is the �ux quantum and e is an elementary charge. Thus,
the phase shift on each site is determined by the vector
potentialA(r) and can be controlled experimentally [17].
The magnetic �eld is introduced in the theory by the den-
sity of states (DOS). There are signi�cant di�culties in
obtaining and analyzing the solutions of the above an-
alytically for every value of f . Only a few closed for-
mulae for DOS are accessible [20] and consequently not
every applied magnetic �eld can be described theoreti-
cally. This allows us the detailed analysis of the dynam-
ical response functions which have been found to play a
crucial role in complex systems. The partition function
of bosonic and fermionic mixtures is written in the form
Z =

∫
[Db̄DbDc̄Dc]e−S[b,c] with action given by

S = Sb + Sc +

∫ β

0

dτH(τ), (2)

where Sb =
∑

i

∫ β

0
dτ b̄i

∂
∂τ bi and Sc =

∑
i

∫ β

0
dτ c̄i

∂
∂τ ci.

Using the bosonic (fermionic) path integral over the
complex �elds depending on the �imaginary time� 0 ≤
τ ≤ β ≡ 1/kBT , with T being the temperature that
we can easily integrate over the fermionic �elds [14]
because spins are frozen due to in�uence of the mag-
netic trap and there is no direct interaction between
fermions. After that, we obtain the partition function

in the form Z =
∫
[Db̄Db]e−Sb[b,nb] e−Tr ln Ĝc with Sb con-

taining now the hopping and interaction term that comes
from bosonic part Eq. (1). The trace of the two-point

correlation function for noninteracting fermions Ĝc, af-
ter exploiting the Fourier�Matsubara transform reads

Tr ln Ĝc = −
U2
bf

2

∑
k,ℓ

Λk(ωℓ)χk(iνℓ)Λ−k(−ωℓ), (3)

where ωℓ = 2πℓ/β (νℓ = π(2ℓ + 1)/β) with ℓ =
0,±1,±2, . . . are the Bose(Fermi)�Matsubara frequencies
respecting periodic (antiperiodic) boundary conditions
of the bosonic (fermionic) �eld operator with Λk(ωℓ) =
b̄k(ωℓ)bk(ωℓ) and

χk(iνℓ) =
∑
k′

nF

(
t
p/q
fk′

)
− nF

(
t
p/q
fk′+k

)
t
p/q
fk′ − t

p/q
fk′+k − iνℓ

, (4)

is the Lindhard function � more commonly called the

RPA with nF(x) being the Fermi distribution; t
p/q
k′ is the

dispersion relation calculated from Harper equation [20].
It correctly predicts a number of properties of the collec-
tive phenomena in electron gas such as plasmons [21]. To
stay in the local regime we perform k and k′ integration
over the �rst Brillouin zone and, in the T → 0 limit, us-
ing an analytic continuation, we obtain imaginary part
χ′′(ω) of the local dynamic Lindhard function (LDLF).
Therefore, the corresponding real part χ′(ω) can be de-
duced from the Kramers�Krönig relation. Now, doing
the inverse Fourier transform (Eq. (3)) and using gradi-
ent expansion, we obtain quadratic form of the trace with
extracted frequency dependence

Tr ln Ĝc → −
U2
bfχ

′(ω)

2

∑
i

∫ β

0

dτ
[
b̄i(τ)bi(τ)

]2
. (5)

It is worth to mention that applying a local, in the
Matsubara-imaginary time, approach we neglect any dis-
sipation e�ects could provide ohmic-like behavior of the
system. Whereas locality in real space excludes some
parts of interesting physics such as the charge density
wave, namely an insulating phase with modulated density
or the supersolid phase, presenting the coexistence of su-
per�uidity and a periodic spatial modulation of the den-
sity, di�erent from that of the lattice. On the other hand,
the long-range character of the fermion mediated inter-
action between bosons with the fermion-induced mean
�eld potential can lead to spatially homogeneous regions
of commensurate CDW. The consequence of the di�er-
ence in masses of bosons and fermions is the fact that the
speed of the Bogolyubov sound vb for bosons di�ers from
the �rst sound vf of the ideal Fermi gas. In typical ex-
perimental realizations the acoustic long-wavelength bo-
son and fermion velocities are comparable and both con-
stituents equilibrate similarly. The mentioned di�erent
mass ratio has far-reaching consequences, including the
possibility of generating the DD oscillations [22].

When we add Eq. (5) to the bosonic part of the ac-
tion there is a striking resemblance to the one-component
Bose�Hubbard action with the original repulsive interac-
tion replaced now by Ub → Ueff = Ub+U2

bfχ
′(ω) which is

the induced, frequency-dependent, e�ective inter-bosonic
potential. From the above we see the DD correlations be-
tween the constituents give rise to additional interaction
among bosons, which is robust to repulsive or attrac-
tive nature of the inter-species interaction but not to the
sign of the LDLF. The interactions caused by the DD
correlations may change its sign (Fig. 1) as a result of
the collective excitations. Such complex behavior of the
mixtures emerges in the limit not reachable in conven-
tional systems of condensed matter physics because the
very high values of magnetic �eld are required to acquire
the desired range f ≤ 1/2. We see that the situation
is greatly modi�ed if one applies lower magnetic �elds
(Fig. 1). To make oscillations experimentally observable
and seen as a density modulation we have to apply high
magnetic �elds. In consequence the e�ective interaction
between bosons can change the magnitude and sign which
result was not presented in the literature. We notice that
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Fig. 1. (a) Real tfχ
′′(ω) and imaginary tfχ

′(ω) parts
of the local, frequency ω/8tf dependent, density�density
response function in the synthetic magnetic �eld for f =
1/4. (b) The complex plot Cole�Cole like diagram [23].
(c) The three-dimensional parametric curve shows the
evolution of the density�density response function with

the frequency. Normalization here tf ≡ t
p/q=0
f .

χ′′(ω) is proportional to the absorption spectrum of the
medium so it can be directly measured (Fig. 1). The
complex plot (Fig. 1b) (x−z plane) is the Cole�Cole like
diagram coming from the dielectric theory that can give
us information about the relaxation time and absorption
spectrum � properties usually measured in the exper-
iments. Figure 1c is the (a) and (b) put on the same
three-dimensional graph to show full frequency depen-
dent spectrum and show its complexity.

3. Conclusion

We have studied a planar mixture of bosons and spin-
less fermions with synthetic magnetic �eld imposed on
the system. We found that the underlying dynamics of
mixture of particles with di�erent statistics and masses
entering a quantum-Hall regime is very complex allow-
ing e�ective bosonic interaction to be switched between
repulsive and attractive. The experimental evidence of
our �ndings is feasible however precise measurements of
the magnetic �eld are requisite which is possible with
the recently developed optically synthesized magnetic
�eld for neutral atoms [17]. The bosonic part of the
action can be used to obtain the quantum phase dia-
gram for the Bose�Fermi mixtures under synthetic mag-
netic �eld, completely unexplored area of the condensed
matter physics. Obviously the obtained two-point Green
function can be also exploited in the context of the the-
oretical prediction of the frequency and temperature de-
pendent tendency toward Cooper pairing [24].
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