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This contribution is devoted to study of dielectric and magnetodielectric properties in transformer oil based
magnetic �uid. The dielectric permittivity and their anisotropy at various mutual orientation electric (50 Hz)
and magnetic �eld were shown at the di�erent volume concentrations of nanoparticles at room temperature. The
linear increase of dielectric constant with volume concentration was con�rmed which is in good agreement with
the theoretical Maxwell prediction. The dielectric anisotropy factor g(B,ω) is very close to g = 1. The values
of permittivity increased with the increase of volume fraction of magnetite nanoparticles. The highest value of
anisotropy characterized by deviation of permittivity ∆ε = ε∥−ε⊥ was found for the highest volume concentration
which could mean that no aggregation of magnetite nanoparticles had appeared.

PACS: 47.65.Cb, 77.22.Gm, 77.22.Ch

1. Introduction

Magnetic �uids are mixtures of organic solvents and
ferro or ferrimagnetic particles in essence. But the impor-
tant factor is that the particles are uniformly dispersed
throughout the liquid volume. Their speci�c properties
are important for use in various �elds, from the techni-
cal sciences to biosciences. There is interest in applied
magnetic �uids based on transformer oil in order to im-
prove the operating parameters of power transformers.
From magnetic �uids are expected to be better thermal
and dielectric bene�ts to transformers. This follows from
improved cooling by enhancing �uid circulation within
transformer windings.
Investigation of dielectric and magnetodielectric prop-

erties of magnetic �uids is connected intimately with
magnetodielectric e�ect that is indicated by magnetodi-
electric anisotropy. The dielectric behavior of magnetic
�uids changes with the application of an external mag-
netic �eld and with the relative orientation of the electric
and magnetic �elds. This e�ect is known as magneto-
-dielectric anisotropy e�ect [1].
Magneto-dielectric e�ects in magnetic �uids have been

investigated by many workers [2�6]. The experimental in-
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vestigations were based on impedance measurement tech-
niques where the magnetic �uid is placed in a capaci-
tor. Measurements of the impedance parameters such as
the modulus and phase are carried out using a bridge or
an RLC meter. The impedance measurement techniques
su�er some serious disadvantages such as electrode ef-
fects, parasitic impedances, skin depth and accuracy re-
lated problems, but the works [1, 7] have determined the
magneto-dielectric e�ect from magneto-optical measure-
ments where the disadvantages su�ered by conventional
impedance measurement techniques are avoided.
When the magnetic �uid is exposed to presence of mag-

netic �eld, the processes in macroscopic surroundings of
electrode system and microscopic surroundings between
magnetic particles themselves created needle-shape ag-
gregations (clusters) of magnetite particles.
One of the solution ways of these processes is equa-

tion that expresses e�ect of force action of magnetic and
electric �elds in surroundings. The force causing mobil-
ity of particle clusters in electric �eld is dependent on
their weight that is dependent on volume concentration
of magnetite particles and local density of magnetic �u-
ids. The Stokes force that expresses e�ect of dynamic
viscosity of magnetic �uids, is not negligible at applica-
tion of alternating electric �eld with frequency 50 Hz.
Velocity of particles v and orientation of its components
(v∥, respectively v⊥) relative to vector E, pertinently to
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vector B have important role from point of view of mag-
netic �eld action with induction B. It can be suggested
the solution of the following cases:
a) If E is variable and B = 0 T, then force in electric

�eld has as a consequence mechanical stress (compres-
sively, tensile) in magnetic �uids. If we accept hypothesis
about local di�erential changes of permittivity and den-
sity caused by action of strong electric �eld, then there
exists a volume force due to the heterogeneous �eld and
anisotropy of insulator medium. Investigation of origin
and existence of space charge between electrodes shows
[5] that action of electric �eld causes polarization of mag-
netic �uid components in nanometric range. As a con-
sequence of this process the gradient force a�ecting the
polarized particles exist.
b) Simultaneous in�uence of electric and magnetic �uid

on magnetodielectric properties of magnetic �uids is de-
voted to analyze of cases that show what application of
electric and magnetic �eld will be dominated for determi-
nation of magnetic �uids permittivity and their loss pa-
rameter at respect of the observed medium anisotropy.
There have been observed the cases when vectors E
and B were parallel and perpendicular (E∥B, E⊥B).
That is why there is a division of particles velocity v and
intensity of electric �eld E into components parallel and
perpendicular to magnetic induction B (v = v∥+ v⊥ and
E = E∥ + E⊥). It can be showed that charged particles
motion in the case E⊥B is characterized by two types of
motion: drift with constant velocity vE and circle motion
with velocity v⊥ that is caused only by magnetic �eld. If
vE exists, then particles move in perpendicular direction
to vectors E and B in combined electric and magnetic
�eld that causes particles motion on a spiral.
In general, magnetodielectric anisotropy factor is de-

�ned as:

g(B,ω) = −
ε||(B,ω)− ε(0, ω)

ε⊥(B,ω)− ε(0, ω)
, (1)

where ε∥(B) and ε⊥(B) are permittivity for E∥B
and E⊥B and ε(0) for B = 0. The value of g was ei-
ther 2 or 1 [8�10]. Experimentally, Cotae [5] and Espurz
et al. [1] have obtained the value of 1 for g(H,ω) while
Mailfert and Nahounou [2] have obtained a value of 2.
Experimental results of Espurz et al. [1] show that the
value of g(H,ω) is 1 at low �elds and 1.23 at high �elds.
The present work is devoted to studying the dielec-

tric and magneto-dielectric properties of transformer oil
based magnetic �uids depending on concentration of
magnetite nanoparticles and mutual orientation of mag-
netic and electrical �elds.

2. Materials and methods

The used magnetic �uid was prepared, based on trans-
former oil UTR 40 and magnetite (Fe3O4) nanoparti-
cles, with oleic acid as surfactant. The synthesis of
MNF with organic liquid carrier, based on an estab-
lished procedure [11], followed these main steps: syn-
thesis of surface coated magnetite nanoparticles: co-

-precipitation (at t ≈ 80 ◦C) of magnetite from aque-
ous solutions of Fe3+ and Fe2+ ions in the presence of
concentrated NH4OH solution (25%), sterical stabiliza-
tion (chemisorption of oleic acid; 80�82 ◦C), magnetic
decantation and repeated washing, extraction of mono-
layer covered magnetite nanoparticles (acetone added;
extraction), to obtain stabilized magnetite nanoparti-
cles. Then, the magnetic nanoparticles were dispersed in
the non-polar liquid carrier at t ≈ 120�130 ◦C, followed
by magnetic decantation/�ltration, �occulation and re-
-dispersion of magnetic nanoparticles to obtain the non-
-polar magnetic nano�uid.
The magnetization curves of the samples were mea-

sured by vibrating sample magnetometry using a VSM
magnetometer (Model 880, DMS/ADE Technologies,
USA) at room temperature (≈ 25 ◦C) in magnetic �eld
up to 800 kA m−1. The measurement of relative permit-
tivity was carried out with help of Shering bridge Tettex
2818 at frequency 50 Hz. That was controlled by mi-
croprocessor. A capacitor was composed from parallel
plate Cu electrodes placed in a container. The electrodes
were 2 cm in diameter and the distance between them
was 0.8 mm. Capacity and loss factor of the capacitor
were measured as a function of the applied electric �eld
intensity in the range of 0.2�1.2 MV m−1. The experi-
mental error of capacity measurements was 0.05% and of
loss factor was 1%.
Permittivity of magnetic liquids was determined from

capacity measurements as εr = C/C0, where C is the
capacity of the capacitor with a magnetic liquid as a di-
electric and C0 is the capacity of the same capacitor �lled
by air.
Two permanent NdFeB magnets were used as a source

of homogeneous magnetic �eld up to 40 mT. Four mag-
netic �uids based on transformer oil with various concen-
trations of magnetite nanoparticles up to 3.03% magnetic
volume fraction and pure transformer oil have been used
in measurements. Gap between circular electrodes was
0.5 mm, temperature 20 ◦C and voltage in range from
100 V to 600 V, i.e. intensity of electric �eld was from
0.2 MV m−1 to 1.2 MV m−1.

3. Results and discussion

There were investigated four samples of magnetic
nano�uid, with carrier liquid of transformer oil TR40 and
magnetite nanoparticles as magnetic dispersed phase,
prepared according to the method presented in [11]. The
four samples of di�erent volume fractions MF1 (1.62%),
MF2 (2.15%), MF3 (2.69%), and MF4 (3.03%) were ob-
tained by dilution of the most concentrated one with the
carrier liquid. The saturation magnetization measured
by VSM was 2.78 kA/m, 4.93 kA/m, 7.71 kA/m, and
9.07 kA/m for 1.62%, 2.15%, 2.69%, and 3.03%, respec-
tively. The additional basic physical properties are given
in [12].
The measurements of permittivity showed that value

of the permittivity increases with volume concentration
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Fig. 1. Dependence of permittivity εr of the magnetic
liquid on electric �eld intensity E without magnetic
�eld.

Fig. 2. Dependence of permittivity εr of the magnetic
liquid on volume concentration at various electric �eld
as a parameter.

Fig. 3. Dependence of permittivity εr of the magnetic
liquid on electric �eld intensity E for sample with vol-
ume concentration 3.03% in parallel and perpendicular
orientation E vs. B.

from 2.23 for 1.62% up to 2.7 for 3.03% of magnetic
nanoparticles (Fig. 1). Simultaneously the permittivity
decreased with increase of the intensity of electric �eld
for all used concentrations of magnetite nanoparticles.
The linear dependence of permittivity on volume con-
centration of nanoparticles was observed, too (Fig. 2), as
predicted by the theoretical Maxwell relation [13].
The ferro�uid permittivity recording versus intensity

of electric �eld obtained with an applied external mag-
netic �eld is shown in Fig. 3 for magnetic �uid with the
volume concentration 3.03%. When continuous magnetic
�eld of 40 mT is applied, the permittivity of the magnetic
�uid is increased for parallel and decreased for perpen-
dicular orientation. The induced anisotropy in relative
permittivity of a magnetic �uid subjected to an exter-
nal magnetic �eld can be seen. The magnetodielectric
anisotropy factor g(B,ω) calculated according to formula
(1) is very close to value g = 1 for all volume concen-
trations which is in agreement with formerly published
results [1].
The variation of the dielectric permittivity with ap-

plied magnetic �eld can be resulting from an align-
ment of non-interacting nanoparticles as a consequence
of the coupling between easy axes and magnetic mo-
ment of particles. The similar dependence of dielectric
anisotropy was observed for other concentrations, too.
The anisotropy characterized by deviation of permittiv-
ity ∆ε = ε∥ − ε⊥ showed that the highest value was
obtained for the highest volume concentration. This fact
could mean that no aggregation of magnetite nanoparti-
cle had appeared.
For higher concentrations of magnetite the increase of

permittivity with electric �eld was observed [14]. This in-
crease was explained by existence of cluster formation as
magnetite particles coated with oleic acid as a surfactant
are electrically charged by adsorbed ions and counter-
-ions from the surrounding atmosphere may be attracted
to them [15]. Counter-ions are ions oppositely charged to
ions adsorbed by particles. Electric dipole moments are
induced in electric �eld. Increasing electric �eld increases
electric dipole�dipole interaction between particles and
supports their agglomeration.
It was established [15] that in magnetic liquids with

nearly spherically shaped particles, the critical frequency
exists above which the magnetodielectric e�ect appears.
The critical frequency of transformer oil based magnetic
liquid with spherically shaped magnetite particles coated
with oleic acid (speci�c density of sample is 1470 kg m−3

and magnetization at H = 8 × 104 A m−1 is M =
25.2×103 Am−1) reaches a value of 55 Hz and the critical
frequency of kerosene based magnetic liquid is lower at
lower speci�c density [14] therefore we suppose that the
critical frequency of our magnetic liquid (speci�c density
is 998 kg m−3, magnetization at H = 8 × 104 A m−1 is
M = 9.071× 103 A m−1 is lower than the used measure-
ments frequency of 50 Hz. The existence of magnetodi-
electric e�ect was con�rmed in our experiments.
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On the other hand, the permittivity measurements in
electric and magnetic �eld con�rmed good structural sta-
bility of magnetic �uid without aggregation which can
predetermine the possibility of its application in power
transformer as cooling and isolative medium.

4. Conclusion

The magnetodielectric e�ect in magnetic liquids was
con�rmed in high electric �elds 0.2�1.2 MV m−1 at mag-
netic �eld of value 40 mT. It has been shown that value
of the permittivity increases linearly with volume con-
centration of magnetite nanoparticles. The values of per-
mittivity decreased with increase of electric �eld for all
concentrations which is probably caused by shifting mag-
netite nanoparticles to circular electrodes which means
that the geometry of electric �eld was changed by the
decrease of active part of dielectrics. The highest value
of dielectric anisotropy was obtained for the highest vol-
ume concentration. This fact could mean that no aggre-
gation of magnetite nanoparticle had appeared and good
stability of magnetic �uid in electric and magnetic �eld
was con�rmed.
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