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It is common to describe graphene as ideally �at plane, however there exists both theoretical and experimental
evidence that it is most usual to �nd it in a rippled state. The ripples can be either induced by the substrate
or formed spontaneously in suspended graphene. The lateral size of such features ranges between several and
tens of nanometers with the height of up to 1 nm. It has been suggested that the presence of ripples could be
one of the factors ultimately limiting mobility of carriers and that it may be also responsible, by introducing
an e�ective gauge �eld, for the lack of weak localization observed in certain graphene samples. In the present
contribution the transport properties of the rippled graphene are studied theoretically starting with the simple
case of one-dimensional modulation. Using either single-band or the full sp3 tight-binding Hamiltonians we
compare and discuss the importance of two ripple-related mechanisms of scattering: the variation of interatomic
distances and hybridization between π and σ bands of graphene.

PACS: 81.05.ue, 72.10.Fk, 72.80.Vp

1. Introduction

The discovery of graphene, two-dimensional (2D) car-
bon allotrope, in 2004 [1] arose high hopes for its ap-
plication in future electronic devices. The reason for
this is high (exceeding 105 cm2/(V s)) mobility of carri-
ers whose density and character (electrons or holes) can
be controlled either by electric or chemical doping. The
remarkable transport properties of graphene are related
to peculiarity of its electronic structure, namely the fact
that low-energy excitations can be described as massless,
chiral Dirac fermions albeit with the speed of light re-
placed by 300 times lower Fermi velocity [2]. This leads
to a range of interesting phenomena like �nite minimal
conductivity, the Klein paradox or the anomalous quan-
tum Hall e�ect which can be observed even at room tem-
peratures (see [3] for recent review).
It is common to assume in the theoretical studies of

graphene that it forms a perfectly �at plane. There exists
however a convincing evidence that it is not so. Sponta-
neous rippling has been seen both in experiment [4] and
simulations [5] for �akes of suspended graphene. In the
more usual case of graphene on a substrate, the structural
corrugations of the latter are followed, at least partially,
by the graphene sheet [6]. In some cases both substrate
induced and intrinsic modulations can be observed [7].
In general the ripples appear to be a common feature of
graphene samples. Lateral sizes of modulations can range
between several and tens of nanometers and the height
can be of up to 1 nm.

2. Theory

Three di�erent mechanisms can modify electronic
structure of thus deformed graphene: (i) alteration of
interatomic distances leading to the change of the hop-
ping integrals, (ii) hybridization between σ and π bands
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which are strictly orthogonal in planar graphene and (iii)
local shifts of the Fermi level (neutrality point) leading
to the formation of the electron and hole pools [8]. In-
terestingly, in the e�ective mass approximation, the �rst
two e�ects can be described in terms of an inhomoge-
neous gauge �eld [9]. The presence of such pseudomag-
netic �eld could lead to the formation of the �at Landau
levels (LL) whose presence was predicted theoretically
using either simple tight-binding model [10] or ab initio
calculations [11].
It has been suggested that rippling can be responsible,

by introducing intrinsic pseudomagnetic �eld, for the ab-
sence of the weak localization in some samples [12] and
also that it can be an ultimate factor limiting mobility of
carriers in graphene [13].
The aim of this paper is to study the transport prop-

erties of graphene in the presence of a simple sinusoidal
modulation along the transport direction. In the follow-
ing paragraphs we will discuss the theoretical methods
employed and then present the results of calculations for
a system consisting of either single or multiple periods of
such modulation.

3. Calculations

The calculations were performed using tight-binding
Hamiltonian in the Slater�Koster parameterization as
given in Ref. [14] (non-orthogonal basis set, nearest
neighbours hopping (n.n.) only). Two speci�c models
were considered: sp3 with both π (pz orbitals) and σ
(s, px, py) bands present (xy being the graphene plane)
and single-band model restrained to the π band. In the
case of the latter all hybridization e�ects are disregarded
and the only e�ect of the deformation of the graphene
plane is the change of interatomic distances leading to
the modi�cation of the hopping and overlap integrals.
A general tl,l′(r) ∼ r−l−l′−1 scaling rule is used to model
this e�ect. By using two models it is therefore possible
to distinguish between the e�ects of σ�π hybridization,
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included naturally by using the Slater�Koster form of the
Hamiltonian, and the scaling of the hopping constant, i.e.
two of the e�ects described above. The presence of the
ripples does not change, energy-wise, the position of the
neutrality point of graphene when only n.n. hopping is
included, hence the third e�ect is not present. Let us
note that the non-orthogonality of the basis set leads to
explicit breaking of the electron�hole symmetry.
A simple one-dimensional ripple, h(x) =

h0 sin(2πx/L), is considered with h being the devi-
ation from the xy plane and x the direction of the
transport. The calculations were performed for two
periods, L, of 60a0 and 120a0, where a0 = 1.42 Å is
the n.n. distance for �at graphene. The graphene plane
is oriented so that the �armchair� direction coincides
with that of the ripple (x). Translational invariance is
preserved in the lateral direction (along y), therefore ky
remains a good quantum number.
The transport properties were studied for a system

consisting of a single period of modulation (scattering re-
gion) sandwiched between �at graphene electrodes. The
e�ect of doping was simulated, independently for elec-
trodes and scattering region, by modi�cation of the on-
-site elements of the Hamiltonian. The local chemical po-
tential, µ, de�ned with respect to the touching point of
the valence and conduction bands (i.e. neutrality point),
was �xed to µ = 1 eV in the electrodes. The Landauer�
Büttiker conductance (G) and Fano factor (F ) were then
calculated using the following formulae:

G =
e2

2πh

∫
dkyT (ky); F =

∫
dkyT (ky)[1− T (ky)]∫

dkyT (ky)

as function of the µ in the central region. The ky-
-dependent transmission probability, T (ky), was deter-
mined using a wave function matching method described
in [15] and similar conceptually to the approach adopted
in [16, 17]. The reported values of the conductance are
per length of the two-dimensional unit cell in the direc-
tion perpendicular to the transport equal to

√
3a0.

4. Results

The results of band structure calculations for a struc-
ture with period of L = 60a0 are shown in Fig. 1 (along
y direction and with kx = 0) for vertical amplitudes (h0)
of 4, 12, and 20 Å, respectively. Initially, for small mod-
ulation (top part), the e�ect of rippling is to shift the
Dirac cones away from its original position, shown in the
plots by a vertical line. The �rst indications of �attening
of a central bands are seen for h0 = 12 Å (middle part)
and for h0 = 20 Å we do see a fully developed �at band,
that is n = 0 Landau level in pseudomagnetic �eld inter-
pretation. Additionally, as the modulation increases the
states in the vicinity of the neutrality point become in-
creasingly localized in the x direction which leads to the
energy gaps opening between sub-bands visible in Fig. 1.
The results shown using solid lines correspond to single-
-band model. In the middle panel sp3 results are also

Fig. 1. Band structures of graphene with a one-
-dimensional sinusoidal ripple. The period of modula-
tion is equal to L = 60a0 and the vertical amplitudes
are indicated in the plots. In the middle part the re-
sults of sp3 model are plotted using dashed lines. The
vertical line indicates the position of the original Dirac
cone for a �at structure.

shown using dashed lines. There are no visible di�er-
ences for the energies of π bands (the lines overlap). The
σ bands however are brought much closer to the Fermi
level than in the �at graphene and are now visible in the
upper part of the plot. Similar results were obtained for
L = 120a0 ripples (not shown), however the formation of
LL state occurs for stronger modulations (h0 = 20 Å and
above). The results presented here show a good overall
agreement with ab initio calculations of Ref. [11].
The calculated conductances are shown in Fig. 2. Con-

centrating �rst on the top part (L = 60a0) we observe
an interesting evolution of the conductance curves with
the increasing amplitude of the modulation. The curve
for �at graphene (h0 = 0 Å) follow, for the most part,
the Sharvin conductance (proportional to the number of
propagating modes) of the central part. The exception
is the area around neutrality point (µ = 0 eV) where
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Fig. 2. The conductance through a single period of
modulation for L = 60 Å (top part) and 120 Å (bot-
tom part) as a function of the chemical potential in the
central region.

the strong contribution from the evanescent states leads
to the rounding of the curve. As the vertical amplitude
(h0) increases, the conductance in this region is initially
unchanged and starts decreasing meaningfully only for
amplitudes over 8 Å. At the same time the conductance
away from neutrality point undergoes dramatic changes
with two satellite regions of lowered conductance devel-
oping around µ = ±0.5 eV. These are getting lower and
broader with increasing h0. At h0 = 12 Å only the cen-
tral region around neutrality point remains di�erent from
zero and even that is gone, for the range of energies stud-
ied, by the time we reach 16 Å. The results for single-band
(solid line) and sp3 models (dashed line) are both shown
but the curves are almost impossible to distinguish on the
scale of the plot. This indicates that the transport prop-
erties are de�ned mostly by the e�ect of varying bond
lengths while σ�π hybridization plays only minor role.
The results of L = 120a0, shown in the bottom part, are
qualitatively very similar. The structure of the conduc-
tance curves can be understood in terms of the under-
lying electronic structure (Fig. 1). The low conductance
regions around neutrality point correspond to the energy
gaps opened by the modulation and the peaks indicate
the sub-bands crossing the Fermi level.

The Fano factors shown in Fig. 3 for L = 60 Å indicate
a sub-Poissonian (F < 1) character of a shot-noise. The
results for region around µ = 0 remain remarkably inde-
pendent of the modulation amplitude. In particular we
observe practically constant maximum value of 1/3, in
agreement with �at-graphene results of [17]. Outside of
the central region F assumes initially, for small h0, lower
values also in line width [17]. Visible lack of electron�hole
symmetry in these regions stems from explicit asymme-
try of the bands and the choice of electron doping in
the electrodes. With the growing amplitude and corre-
sponding decrease of the conductance (Fig. 2) one sees

Fig. 3. Fano factors for transport through a single pe-
riod (L = 60 Å) of modulation as a function of the local
chemical potential.

the general increase of F with maximum values growing
monotonically with h0. This is in line with F = 1 limit
expected for uncorrelated tunneling regime.

5. Summary

In this paper the results of transport calculations for
graphene with a simple sinusoidal modulation were pre-
sented. The dependence of the conductance through a
single ripple on the chemical potential was found to be
strongly non-monotonic with generally low values found
for a strong modulation. Little di�erence was found be-
tween the model with and without hybridization which
leads to the conclusion that it is of minor importance at
least for the geometries studied.
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