Vol. 121 (2012)

ACTA PHYSICA POLONICA A

No. 56

Proceedings of the European Conference Physics of Magnetism 2011 (PM’11), Poznan, June 27-July 1, 2011

Aharonov—Bohm and Relativistic Corbino Effects
in Graphene: A Comparative Study

of Two Quantum Interference Phenomena

A. RYCERZ*

Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski
W.S. Reymonta 4, PL-30-059 Krakéw, Poland

This is an analytical study of magnetic fields effects on the conductance, the shot noise power, and the third

charge-transfer cumulant for the Aharonov-Bohm rings and the Corbino disks in graphene.

The two distinct

physical mechanisms lead to very similar magnetotransport behaviors. Differences are unveiled when discussing

the third-cumulant dependence on magnetic fields.

PACS: 72.80.Vp, 73.43.Qt, 73.63.—b

1. Introduction

The advent of graphene, two-dimensional form of
carbon in which itinerant electrons behave as mass-
less Dirac fermions [1, 2], led condensed-matter physi-
cists to reexamine effects of quantum transport in nano-
structures [3]. The Aharonov-Bohm effect (ABE) [4],
a famous condensed-matter realization of the two-slit
gedankenexperiment [5], has also gained some atten-
tion [6-8]. Very recently, it was predicted theoretically
[9] that periodic (approximately sinusoidal) magnetocon-
ductance oscillations appear in weakly doped Corbino
disks in graphene. Unlike ABE, which also appears for
the Schrédinger electrons in the two-dimensional elec-
tron gas (2DEG), the quantum relativistic Corbino effect
(QRCE) is a quantum-interference phenomenon specific
for massless Dirac fermions, for which transmission via
evanescent waves leads to a finite value of the conduc-
tance at zero doping.

It was also found in Refs. [9] and [10] that for QRCE in
disks of moderate radii ratios ro/r; < 10 (see Fig. 1) two
basic transport characteristics: the conductance G and
the shot-noise power (quantified by the Fano factor F)
show qualitatively similar behavior as their ABE counter-
parts. In this paper we extent the discussion on the third
charge-transfer cumulant [11] showing that this quantity
(analyzed as a function of applied magnetic field) demon-
strates several new features of QRCE absent in ABE, in-
cluding the oscillations frequency doubling at ro/r; ~ 7.
But first, we briefly recall the basic definitions of meso-
scopic electron transport characteristics.
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Fig. 1. Devices considered in the paper (schematic).
Voltage source passes the current from the right to the
left lead in case of the Aharonov—Bohm ring (a) or from
the outer circular lead to the inner one in case of the
Corbino disk (b) in graphene. The coordinate system
and the applied magnetic field orientation (the same for
both devices) are also depicted. Additional gate elec-
trodes (not shown) may be used to tune dopings or to
induce transverse electric fields.

2. Counting statistics and charge cumulants

FElectric charge ) passing the nanoscale device at the
time interval At in the presence of external bias voltage
V' is a random variable, a statistical distribution of which
can be expressed in terms of characteristic function

A(x) = (exp(ix@/e)), (1)
where the electron charge is —e and (X) denotes the ex-
pectation value of X. In the so-called shot-noise limit
eV > kgT (with the Boltzmann constant kg and tem-
perature T') the characteristic function is given by [3]:
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where T}, are transmission probabilities for normal modes
in leads, each of which has a degeneracy s (at low fields,
s = 2 for 2DEG, or s = 4 for bulk graphene due to spin

InA(x) =

(1242)
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and valley degeneracy). We have assumed V > 0 for
simplicity; & denotes the Planck constant.

The average charge (Q), as well as higher charge-
-cumulants ((Q*)) = ((Q — (Q))*) may be obtained by
subsequent differentiation of In A(y) with respect to ix
and setting x = 0. In particular, the conductance

dln A 2
- I Sl T

VAt~ VAL (iy)
which restores the Landauer—Buttiker formula.
gously, the Fano factor
Q) L,T(1-T,) "
<<Q2>>Poisson Zp Tp ’
where ((Q?))poisson = €(Q) denotes the value of ((Q?))

for the Poissonian limit 7, < 1. We further define the
R-factor, quantifying the third cumulant

G=

’X:O

Analo-

F=

Re @) S,nL0-m)a-2m) o
B <<Q3>>Poisson Zp Tp ’

with ((Q?))poisson e?(Q). For undoped graphene

samples, similarly as for diffusive wires, the dis-

tribution of transmission eigenvalues is pqig(T) =
2G/(goTv/1 —T) [12], with the conductance quantum
go = 2¢%/mh, leading to F = 1/3 and R = 1/15.

3. Aharonov-—Bohm effect in graphene

Recent experimental [7] and numerical [8] studies sug-
gest that the magnetoconductance of the Aharonov—
Bohm rings in graphene behaves similarly as the mag-
netoconductance of two parallel tunnel junctions [13].
In particular, the oscillations magnitude AG = Gpax —
Gmin X Gav < 9o (Wlth Gmax7 Gn11117 and Gav the max-
imal, the minimal and the average value of the con-
ductance when varying flux piercing the ring area @&;
see Fig. la).

Such observations allow us to regard electron transport
through a narrow symmetric ring as dominated by a sin-
gle mode (p = 0) with

Ty = I cos? (720 + ;j;), (6)
where I' < 1 is the transmission probability for each of
the ring arms [14], v is the total dynamic phase gained
by an electron traveling around the ring at zero magnetic
field (typically, 7o is controlled by the transverse electric
field induced by gate electrodes not shown in Fig. 1a),
and Pap = 2wh/e is the flux quantum. We notice
here that randomly-chosen 7 leads to the distribution
of transmission probabilities pap(T) = 1/7/T(I' —T),
with 0 < T < I'. Subsequently, G = goI'/2, F = 1/4,
and R = 0, which reproduce the results for a symmet-
ric chaotic cavity [3]. Although we consider a simple
model (6), the universality of chaotic cavity transport
properties lets us believe that these results also hold true
for real systems. So far, the experimental values of F
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and R for the Aharonov-Bohm rings in graphene are un-
available.
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Fig. 2. Magnetic flux effect on the conductance (top
part), the Fano factor (middle part) and the R-factor
(bottom part) obtained from a single-mode model of
transport via symmetric Aharonov—Bohm ring (6). The
parameters are: I' = 1 (solid lines), I' = 1/2 (dashes
lines), and I' = 1/10 (dashed-dot lines); o = 0 for all

curves.

Substituting T, = Todo,p into Eqgs. (3)—(5) we obtain
the conductance, the Fano factor, and the R-factor pre-
sented in Fig. 2 for 79 = 0 and selected values of I'. Each
of the studied quantities oscillates as a function of flux
with period ®ap. The influence of higher harmonic fre-
quencies becomes visible only for the R-factor if I' > 1/2.
The first-harmonic amplitude, however, dominates the
magnetic field dependence of R for any I', and no quali-
tative effect (such as the frequency doubling) is present.
Also, the oscillations magnitudes: AG/gy = AF =T
and AR = I"(3 — 2I"), with I = min(I", 2), are all
monotonically increasing functions of I'.

4. Relativistic Corbino effect

Transmission probabilities for the Corbino disk in un-
doped graphene (see Fig. 1b) are given by [9]:
1
Ty = 27/ - )

cosh”[(§ + P12/ Do) In(ra/71)]

where j = :I:%7 :I:%, ... is the angular momentum quan-
tum number, ¢15 = 7B(r3 — r}) is the flux piercing the
disk in the uniform magnetic field B [15], and &y =
2@ap In(ra/r1) is the oscillation period of the conduc-
tance and higher charge-cumulants. Equation (7) holds
true also in the small vicinity of the charge-neutrality
point, defined via |P12| < 2Pap In(five/|u|r1), where
vp ~ 105 m/s is the Fermi velocity in graphene and
is the electrochemical potential.

(7)
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Fig. 3. The same as in Fig. 2 but for the undoped
Corbino disks of radii ratios r2/r1 = 2, 4, 7.2, 10, and
50 (top to bottom solid line at each part). In parts (b)
and (c¢) all but the uttermost bottom curves are shifted
upward for clarity. Diffusive values of F' and R are also
shown (dashed lines).

We now substitute T} to Eqgs. (3)—(5) for measurable
quantities. Results are presented in Fig. 3. For small val-
ues of r9/r1 we have G =~ 2go/In(re/r1), F ~ 1/3, and
R =~ 1/15, reproducing the diffusive values. This is also
worth to notice that taking random fluxes @15 covering
uniformly the period @y, one restores pqig(7T") for arbi-
trary j and r3/r1 in Eq. (7). Subsequently, diffusive val-
ues of G and higher charge cumulants ((Q*)) are exactly
restored by averaging over magnetic fields for any ro/r;.
For large ro/r1, the system alternates between two trans-
port regimes when varying magnetic field: At &5/ Pp
close to half-odd integer, the transport is governed by a
mode with T =~ 1, leading to G = go, F' = R = 0, such
as for a single-mode quantum point contact. On the con-
trary, when @12/ Py is close to an integer, we have T; < 1
for all j-s, leading to G < go, F' = R =~ 1, such as for
a tunneling junction. This feature makes the system be-
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havior similar to that characteristic for a double barrier
rather than the Aharonov-Bohm ring [3].

5. Fourier analysis

A deeper insight into the magnetic fields effect on
transport via Corbino setup is provided with the Fourier
decomposition of the measurable quantities. The follow-
ing expressions are obtained employing the Poisson the-
orem:

G =Gy 1+QZ(XHCOS¢” s (8)

n>1

2
% + 227121 an<% - %l%) cos ¢n,
o 142> o, ancoso,

; 9)

2 4
% + 22721 O‘ﬂ(%s — %li + %lﬁ) cos ¢,
14+237 5 apcosoy &10)

with Go = 2go/In(re/r1), ¢n = 2anP12/ Py, Iy
n/In(re/r1), and o, = (—1)"x2l,,/sinh(72l,).
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Fig. 4. Oscillations magnitude Xmax — Xmin for X =

G/go (solid line), X = F (dashed line), and X = R
(dashed-dot line) as a function of the Corbino disk radii
ratio r2/r1.

It is clear from Eqs. (8)—(10) that for the moderate val-
ues of ro/ry (corresponding to large [,,-s) the oscillations
magnitude of first three charge-cumulants grows system-
atically with the cumulant rank (see Fig. 4). In fact,
AX = X nax — Xmin exceed 10% of the diffusive value for
ro/r1 > 4.9 if X = G/go, for ro/r1 > 2.8if X = F, and
for ro/r1 > 2.0 if X = R. The behavior of charge cu-
mulants for larger ro/71 is, however, more complicated.
Expanding Eqgs. (8)—(10) up to the terms o< |a1]| gives us

G ~ Go[l — 2|as|cos(2m P12/ Po)], (11)
1 4r? 2
F= 3 + ?\aﬂll cos(2m D12/ Do), (12)
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R~ i + ?|a1\ <Zf - 5[‘11) cos(27rq§102>. (13)
Due to a fast decay of |, | with growing n, the above pro-
vides excellent approximations of G and F for ro/r1 < 10.
This is not the case for R, a first-harmonics amplitude
of which changes the sign at ro/r1 = exp(y/2/57) =~
7.2, leading to the oscillations frequency doubling (see
Fig. 3c) and to a cusp-shaped local minimum on the
AR plot (dashed-dot line in Fig. 4, notice also a lo-
cal maximum at ro/r1 = 4). For larger ro/r1-s, the
magnitudes growths slowly approach the limiting value
AG/go = AF = AR = 1, keeping the relation AR <
AG/go < AF.

6. Conclusions

We find the third cumulant of charge transfer via the
Corbino magnetometer in graphene with moderate (and
thus most likely experimentally accessible) outer to inner
radii ratios ro/r; exhibits remarkably stronger oscilla-
tions with the varying field than earlier predicted for the
conductance [9] and the shot-noise power [10]. The oscil-
lations magnitude shows surprising features when stud-
ied as a function of ro/rq, including the maximum at
ro/r1 ~ 4, and cusp-shaped minimum accompanied by
frequency doubling near ro/r1 = 7. Such features, to-
gether with the size-dependent oscillations period, may
help determining the effective proportions of ballistic
graphene samples attached to metallic leads, at least in
the case of a rotationally-symmetric setup.

Additionally, third cumulant appears to be the lowest
in rank that is capable of illustrating the qualitative dif-
ference between electron magnetotransport through the
Aharonov—Bohm and the Corbino quantum interference
devices in graphene. Certain features of such two sys-
tems suggest that the former and the latter may repro-
duce transport properties of chaotic cavities and diffusive
wires (respectively).
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