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Dark States and Transport through Quantum Dots
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We consider current through triple and quadruple quantum dot systems in an in-plane electric �eld and in
the sequential tunneling regime. The electric �eld breaks symmetry of the system and can trap electron in a dark
state in which current �ow can completely be blocked. Consequently rotating the electric �eld, one can observe
current oscillations and blockades due to dark state.
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1. Introduction

In quantum optics dark states and coherent popula-
tion trapping are well known phenomenon, in which the
states are decoupled from the laser and can no longer be
excited into other states (in contrast to bright states).
By analogy one can consider coherent trapping in elec-
tronic transport in a system of quantum dots [1]. In the
regime of high bias voltage electron tunneling processes
from/to the electrodes play the same role as the laser
radiation and single-electron tunneling among quantum
dots corresponds intra-atomic transitions. Destructive
quantum interference can lead to coherent trapping with
electronic dark states. More recently, the e�ects of the
dark states on transport through triple and quadruple
dots was analyzed using the methods of the general mas-
ter equation [1] and the diagonal master equation [2, 3].
In this paper we want to study dark state conditions in
the presence of small and large electric �eld for triple
and quadruple dots for di�erent orientation of an exter-
nal electric �eld. We restrict our considerations to the
case with a single electron in the system and just one
level on each dot in an in�nite bias limit.

2. Model and methods

The schematic of a triple- and quadruple-dot system
is displayed in Fig. 1. We assume that dots are coupled
coherently together, which is described by the hopping
matrix element t, and ΓL and ΓR are tunneling rates to
the left and the right electrodes. In the presence of an
electric �eld E the corresponding Hamiltonian of the sys-
tem can be expressed as

HQDs = t
∑
i<j

(
c†i cj +H.c.

)
+
∑
i

[εi + eEr cos(θ + (i− 1)2π/N)]c†i ci, (1)

where electron hopping between nearest neighbor sites is
described by the �rst term. The last term shows the ef-
fect of the electric �eld on the corresponding local energy
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εi of dot. Here e, N , and θ denote the charge of an elec-
tron, the number of dots in the system and an angle of
the electric �eld (displayed in Fig. 1). Since the electric
�eld changes the local site energies, one can prepare an
experiment via sweeping the gate voltage of dots.

Fig. 1. Con�guration for triple dots (a), symmetrically
coupled quadruple dots (b), and asymmetrically coupled
quadruple dots (c) in the presence of the electric �eld E.

In order to study the transport properties of the triple-
and quadruple-dot system, we use the generalized mas-
ter equation. Here, we give a brief consideration of the
method. The density matrix ρ(t) contains entries for sin-
gle electron states |i⟩, as well as for the empty state |0⟩.
Within the Born�Markov and the in�nite-bias approxi-
mation, the time evolution of the density matrix is given
by the generalized master equation in the Lindblad form,

dρ

dt
= − i [HQDs, ρ]

+
∑
i=L,R

[
Γi

(
DiρD

†
i −

1

2
D†
iDiρ−

1

2
ρD†

iDi

)]
, (2)

where the quantum jump operators DL = |L⟩⟨0| and
DR = |0⟩⟨R| describe irreversible tunneling of electrons
into and out of the quantum dot system. Here |L⟩ and |R⟩
are single electron states of the left and right quantum
dot attached to the left and the right lead, respectively.
The above master equation can then be written as ρ̇ = Lρ
with the Liouvillian L. The stationary properties of the
system are determined by the eigenvalues and eigenvec-
tors of L. In the limit of the in�nite bias the current
at the steady state is given by I = eΓLρ00(∞)/~, where
ρ00(∞) is the stationary density matrix for the probabil-
ity of �nding the system to be empty. If I = 0, we say
that the current is blocked due to a dark state.
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3. Current oscillation and dark state

The application of electric �eld changes symmetry of
the system and leads to oscillations in the current. For
a special electric �eld orientation θ, one can observe the
dark-state in which current blockade occurs (I = 0). In
the symmetric system (εi = 0 for any i) an exact ex-
pression for the current can be found. For the triple dot
system the current can be written as

I3QDs = 16eg2t2Γ [cos θ + sin(θ + π/6)]
2
/~ξ,

ξ = 27g4 + 16t2Γ 2 + 6g2
(
28t2 + Γ 2

)
− 12gt

(
6g2 + Γ 2

)
cos θ + 3g2

(
12g2 + 16t2 + Γ 2

)
× cos 2θ − 36g3t cos 3θ + 18g4 cos 4θ

+
√
3
[
−4gtΓ 2 sin θ + 3g2

(
Γ 2 sin 2θ + 4gt sin 3θ

)]
,

(3)

where ΓL = ΓR = Γ and g = eEr. The current for the
symmetric system of four dots (Fig. 1b) can be written
as

I4QDs = 32eg2t4ΓLΓR cos2 θ/~υ,

υ = 32g2t4ΓR cos2 θ + ΓL

(
g4 + 8g2t2 + 8t4

+ g4 cos 4θ
)(
16g2 cos2 θ + Γ 2

R

)
, (4)

whereas for the asymmetric quadruples (Fig. 1c), one gets

I4QDs = 4eg2t2ΓLΓR cos θ sin θ/~β,

β = 4g2t2ΓR cos θ sin θ + ΓL

[
8g2

(
t2 + g2

)
sin 2θ

+Γ 2
R

(
2t2 − g2 cos2 θ + 4g2 cos θ sin θ

)]
. (5)

The results are plotted in Fig. 2. Let us �rst focus on
the triple dot system. There can be seen current oscilla-
tions with the current blockade at some �eld orientations.
The current blockade occurs when the electron localized
in the dots 1 and 2 with the same probabilities and the
electric �eld is perpendicular to the bond 12. Moreover,
one can see that peaks of the current occur when all of
the states are occupied with the same probabilities.
Next, we address the symmetrically quadruple dot sys-

tems as displayed in Fig. 2. In this case, the dark state
occurs when the electric �eld is pointed from the dot 2
to the dot 4 or vice versa. In this situation the proba-
bility to �nd electron in the dot 3 is zero. This means
that electron is located in the dots 1, 2, and 4. In other
words, one can say that the dot 3 is decoupled from the
other dots as one expects for the dark state.
For the asymmetrically quadruple dots the dark state

occurs when the electric �eld is pointed from the dot 1
(2) to the dot 3 (4) and vice versa (the electric �eld is
one of the diagonal of quadruple dots). In this situation
an electron is distributed between the dots 1, 2, and 3
only. The dot 4 is decoupled from the other dots and the
probability to �nd there the electron is zero.
The above results can be understood by considera-

tion of the interference between electron waves travel-
ling through di�erent paths: clockwise and anticlock-

Fig. 2. Stationary current I in units of I0 = eΓ/~ ver-
sus angle Θ through the triple dots (dashed line for
t = −1 meV and full line for t = 1 meV) (a), sym-
metrically (full line) and asymmetrically (dashed line)
quadruple dots (b) for t = 1 meV. The parameters are
Γ = 0.01 meV, ε = 0 meV, and g ≡ eEr = 1 meV.

wise. First we focus our attention to the triple dot
system which is occupied with one electron. If we as-
sume that at time τ = 0 the system is in the ini-
tial state |ψ(0)⟩, then according to the time-dependent
Schrödinger equation a wave function at later time τ is
|ψ(τ)⟩ = exp(− iHτ)|ψ(0)⟩, which can be expanded as
|ψ(τ)⟩ ≈ (1− iτH − τ2H2/2)|ψ(0)⟩ for small times. We
assume that the system is primarily in the state |1⟩. The
�rst order of the transition amplitudes from the dot 1

to 3 and the dot 2 to 3 are a
(1)
31 = ⟨3|H|1⟩ = t and

a
(1)
32 = ⟨3|H|2⟩ = t, respectively. Therefore, if the initial

state is the dark state |ψ⟩ = (|1⟩ − |2⟩)/
√
2, the waves

in the paths from the dot 1 to 3 and the dot 2 to 3 in-
terfere destructively at the dot 3 with a total amplitude

a
(1)
3ψ = ⟨3|H|ψ⟩ = (a

(1)
31 − a

(1)
32 )/

√
2 = 0.

The total second-order amplitude for the electron
which is in the dark state moving from the dots 1 and 2 to

the dot 3 is then a
(2)
3ψ = ⟨3|H2|ψ⟩ = eErt[cos(θ)+sin(θ+

π/6)]/
√
2. One can observe that this probability equals

to zero and the current is blocked for θ = 2π/3 + nπ,
n = 0, 1, 2, . . .

Now we follow the above description of the dark
state conditions for the symmetrically and asymmetri-
cally quadruple dot con�gurations. For both the sym-
metrically and asymmetrically coupled quadruple dot
system, we assume that the system is primarily in the
state |1⟩. To the �rst order in τ , the amplitudes for
the transition from the dot 4 to 3, 1 to 4, 2 to 3,
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3 to 4 are a
(1)
34 = ⟨3|H|4⟩ = t, a

(1)
14 = ⟨1|H|4⟩ = t,

a
(1)
32 = ⟨3|H|2⟩ = t, a

(1)
34 = ⟨3|H|4⟩ = t, respec-

tively. Thus if we start with the system in the dark
state |ψ⟩ = (|4⟩ − |2⟩)/

√
2 (|ψ⟩ = (|1⟩ − |3⟩)/

√
2), the

electron wave in the paths 123 and 143 (1234 and 14)
interfere destructively at dot 3 (4) with a total am-

plitude of a
(1)
3ψ = ⟨3|H|ψ⟩ = (a

(1)
34 − a

(1)
32 )/

√
2 = 0

(a
(1)
4ψ = ⟨4|H|ψ⟩ = (a

(1)
41 − a

(1)
43 )/

√
2 = 0). Consider-

ing the second order transitions from dot 1 to 3 (1 to 4)

a
(2)
3ψ = ⟨3|H2|ψ⟩ = eErt sin(θ) (a

(2)
4ψ = ⟨4|H2|ψ⟩ =

eErt cos(θ)). One can easily see that the current block-
ade occurs for θ = π/2 + nπ, n = 0, 1, 2, . . . (θ =
nπ/2, n = 0, 1, 2, . . .). The di�erence between symmetri-
cally and asymmetrically quadruple dots can be due to
di�erent paths through the upper and lower dots: the
paths 123 and 143 for the symmetric system and also
1234 and 14 for the asymmetric system.
We furthermore consider a negative value of hopping t.

Figure 2 shows that the dark state conditions for both
positive and negative t are the same; however, there are
some discrepancies between the current amplitude due
to breaking of the electron�hole symmetry. On the other
hand, for symmetrically and asymmetrically quadruple
dots there is no di�erence between the positive and neg-
ative t due to the electron�hole symmetry.

Fig. 3. Stationary current I in units of I0 = eΓ/~ ver-
sus angle Θ through the triple dots (a), symmetrically
(full line) and asymmetrically quadruple dots (dashed
line) (b). The parameters are t = 1 meV, Γ = 0.01 meV,
ε = 0 meV, and g ≡ eEr = 8.

Until now, we have discussed the currents for a small
electric �eld g ≡ eEr = 1. In the same way, we can
also derive the stationary current for a very large electric
g ≡ eEr = 8 in Fig. 3. In the case of triple dots, the
dark state conditions are the same for large and small
electric �elds. Now the current peaks are much sharper
due to electron localization by high electric �elds. In the
case of the quadruple dot con�gurations, the positions
of dark state are still the same; one can see very nar-
row dips at the same position as in Fig. 2b. Electron
localization leads also in this case to sharp resonant cur-
rent peaks. The current amplitudes decrease signi�cantly
with increasing electric �eld and it is about one hundred
times smaller than the current of triple dot system. It
should be mentioned that in large electric �elds the cur-
rents for all of the dot con�gurations are not dependent
on the positive and negative values of t.

4. Conclusion

The behavior of the coherently coupled triple- and
quadruple-dot system in electric �eld studied here is gov-
erned by the coherent population trapping. One can
�nd that a dark state, for which current blockade oc-
curs, depends on the orientation of electric �eld as well
as the quantum dot geometrical structures. Electric �eld
breaks symmetry of the systems and leads to destruc-
tive quantum interference with the coherent population
trapping. The electric �eld rotation causes current oscil-
lations, which depend on the quantum dot geometrical
structure as well as strength of the electric �eld.
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