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This contribution reports on theoretical studies of electronic transport through graphene nanoribbons in
the two-terminal geometry. The method combines the Landauer-type formalism with Green’s function technique
within the framework of the standard tight-binding model. The aim of this study is to gain some insight on
how fundamental electric current characteristics (conductance and shot noise) depend on interface conditions
imposed by graphene nanoribbon/metal-electrode contact details. Calculations have been carried out for both
end- and side-contact geometries, and metallic (zigzag-edge) as well as semiconducting (armchair-edge) graphene
nanoribbons. It turns out that results for side-contacted systems depend on the ratio between the free-standing

graphene nanoribbon length to that covered by the electrode.

For sufficiently long nanoribbons the results

start converging when this ratio exceeds 0.5. In the case of ferromagnetic contacts, the giant magnetoresistance

coefficient is also discussed.

PACS: 81.05.ue, 75.47.De, 73.23.Ad

1. Introduction

Graphene, a single-atom thick layer of graphite, has
been under intensive studies for 7 years, i.e since it
was first shown experimentally to form a stable two-
-dimensional structure [1]. One of the fundamental
problems related with potential applications of graphene
nanoribbons in nanoelectronics and spintronics concerns
the impact of graphene nanoribbons (GNR) /electrode in-
terfaces on electronic transport and magnetic properties.
This problem has not yet been unambiguously solved,
despite much attention devoted to it [2-7]. The present
studies aim at gaining some additional insight into this
issue.

2. Method

The most important facts concerning the present
method are as follows: (i) Two terminal systems
are studied with metallic external electrodes either
end-contacted or side-contacted to graphene nanorib-
bons. (ii) The electrodes are infinite (or semi-infinite)
3-dimensional slabs. (iii) Recursive Green’s function
method is combined with the Landauer formalism:

G=1/(E—H — Y, — %),
T = I'LGIRGH,

o2
o= ﬁTr (T),

Ir = i(EL,R - EE,R)v
F=1-"Te(T%/Tx(T),
GMR = 100(1 — O—T,l«/O—T»T)'

Above, G is Green’s function, H is a tight-binding
Hamiltonian matrix, X, r are self-energies for the left
(L) and right (R) electrodes, T is a transmission ma-
trix whereas o and F' stand for the conductance and
the shot noise Fano factor. The Hamiltonian is a one-
-orbital block tri-diagonal matrix whose sub-matrices
contain nearest neighbor hopping integrals, allowed to
take 3 values (t = 2.7 eV, tm = t/2 and tc = /tiym)
inside the GNR, inside the electrode and at the GNR/
electrode interface, respectively. If the electrodes are fer-
romagnetic, a giant magnetoresistance (GMR) coefficient
is also computed in terms of the respective conductances
for the parallel magnetization alignment of the electrodes
(11) and the antiparallel one (1]). In that case on-site pa-
rameters in the model electrodes have been chosen such
that their spin polarization equals 50%. The transport
regime of interest here is the ballistic one [8-10], with a
strong coupling between the nanostructure and the leads
(the opposite limit, Coulomb blockade, was considered
in [11]). For more detailed description of the present for-
malism on self-energies and the recursive Green function
method see [7, 12].

3. Modelling and results

The systems under consideration are schematically
shown in Fig. 1. They consist of metallic electrodes
(big spheres) coupled to the GNR (small spheres). Two
first setups correspond to end- and side-contacted zigzag
GNRs, whereas the others are their armchair counter-
parts. The presented systems differ fundamentally from
each other, since the former is always metallic and the
latter — semiconducting (for the widths discussed here).
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In case of the zigzag GNR, increasing the unsupported
length results in a saturation of the conductance (G)
at €2/h per spin — meaning that the interfaces become
more and more transparent. For the armchair semicon-
ducting GNR, in turn, beyond the energy gap the con-
ductance for the side-contacted systems is quantitatively
close to that of the end-contacted one (Lo = 0) for ul-
tra short lengths only, otherwise G reveals much more
pronounced dips.
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Fig. 1. Schematics of the end- and side-contacted
zigzag setups as well as the armchair ones (left to right).
The labels W, L, Lo stand for the relevant dimensions
of the GNRs: the width along the horizontal edge, the
unsupported length along the vertical edge, and the
electrode-supported length, respectively.
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Fig. 2. Conductance of zigzag (left) and armchair

(right) GNRs for setups of comparable sizes (width =
W, unsupported length = L, and supported length =

Lo).

Remarkably, both in zigzag- and armchair systems the
saturation takes place roughly at Lo/L = 0.5, whereas
in order to approach the end-contacted limit, the elec-
trode supported length must be short enough so that
Lo/L =~ 0.1. As concerns the Fano factor, F' (see Fig. 3),
the results converge analogously as for G. However in
the zigzag case F' goes to the noiseless limit, whereas
for the semiconducting armchair GNRs there are pro-
nounced oscillations, ranging from 0 up to 0.8 with Er
(or gate voltage). The convergence with increasing L is
easily seen in the left parts of Figs. 2 and 3 (flat curves).
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Fig. 3. As in Fig. 2 but for the noise Fano factor.

As concerns the right parts, the convergence is also ev-
ident. Let us note that crosses and circles overlap with
one another.
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Fig. 4. GMR for armchair (ac) and zigzag (zz) GNRs
for end- and side-contacted setups.

Figure 4 presents GMR coeflicients of zigzag and arm-
chair setups for Ly = 0 (end-contacted), and Lo ~ 19 nm
(close to the saturation coverage). As can be readily seen,
the GMR coefficients in the zz-GNRs are small and get
reduced while increasing the coverage length. In contrast,
for ac-GNRs with a sufficiently long electrode-supported
part, GMR can assume quite large values.

4. Conclusions

Summarizing, it has been shown that in the ballistic
transport regime electronic transport characteristics de-
pend in general on whether the setups are of end- or
side-contacted type. However, since the results converge
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rather quickly with the length of the metal-electrode sup-
ported part of the GNR, experimentally side-contacted
and embedded-end-contacts results would be hard to tell
from one another. The GMR coefficient of zigzag GNRs
turns out to be small, whereas that for armchair GNRs
can reach several tens percent.

Acknowledgments

This work was supported by the Polish Ministry of
Science and Higher Education as a research project No.
N N202 199239 in years 2010-2013.

[1]

2]

References

K.S. Novoselov, A.K. Geim, S.V. Morozov,
D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,
A.A. Firsov, Science 306, 666 (2004).

Y.M. Blanter, I. Martin, Phys. Rev. B 76, 155433
(2007).

[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]

J.P. Robinson, H. Schomerus, Phys. Rev. B 76,
115430 (2007).

D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Nano
Lett. 3, 15141 (2003).

X. Song, X. Han, Q. Fu, J. Xu, N. Yu, D. Wang,
Nanotechnology 20, 1 (2009).

Y. Matsuda, W.-Q. Deng, W.A. Goddard, J. Phys.
Chem. C 114, 17845 (2010).

S. Krompiewski, Semicond. Sci. Technol. 25, 085011
(2010).

S. Krompiewski, J. Martinek, J. Barna$, Phys. Rev. B
66, 073412 (2002).

N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys.
Rev. B 73, 195411 (2006).

A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon,
G. Cuniberti, S. Roche, Nano Res. 1, 361 (2008).

I. Weymann, J. Barnag, S. Krompiewski, Phys. Rev. B
78, 035422 (2008).

S. Krompiewski, Phys. Rev. B 80, 075433 (2009).



