
Vol. 121 (2012) ACTA PHYSICA POLONICA A No. 5�6

Proceedings of the European Conference Physics of Magnetism 2011 (PM'11), Pozna«, June 27�July 1, 2011

Spin Thermoelectric E�ects in Transport through a Two-Level

Quantum Dot Coupled to Ferromagnetic Leads

�. Karwackia,∗, P. Trochaa and J. Barna±a,b

aDepartment of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland
bInstitute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Pozna«, Poland

We investigate spin thermoelectric e�ects in a two-level quantum dot attached to external ferromagnetic leads.
The basic thermoelectric coe�cients are calculated by means of the non-equilibrium Green functions approach in
the mean �eld approximation for the Coulomb term. Speci�cally, we calculate spin-dependent thermopower (spin
Seebeck coe�cient) and the charge thermopower. These coe�cients measure spin and charge voltage drops across
the device, respectively. Moreover, the �gure of merit and its spin analog (which measures the spin thermoelectric
e�ciency) are presented and discussed. We also show that the indirect (via the leads) coupling between the dot's
levels can signi�cantly enhance the thermoelectric e�ects.
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1. Introduction

The spin Seebeck e�ect has been recently observed in
a metallic magnet subjected to a temperature gradient
[1, 2]. This novel phenomenon is a spin version of the
Seebeck e�ect, and enables conversion of heat current to
a spin voltage. The latter may be used to drive non-
-equilibrium spin currents. Roughly speaking, the spin
Seebeck e�ect occurs owing to di�erent scattering rates
and di�erent densities of states for spin-up and spin-down
conduction electrons. In other words, the two spin chan-
nels can be described by their own Seebeck coe�cients
which are di�erent. It is worth nothing that generation
of a pure spin current is of fundamental importance for
spintronics applications.
It is well known that the thermoelectric e�ects be-

come strongly enhanced in systems of reduced dimen-
sionality [3]. They are also enhanced by the Coulomb
blockade e�ects [4, 5]. All this leads to violation of the
Wiedemann�Franz law and inholding of the Mott rela-
tion [6, 7]. Quantum dots possess the above properties
and seem to be good candidates for heat to electrical
energy conversion devices. Owing to these features and
rather low thermal conductance, quantum dots can dis-
play high thermoelectric e�ciency, which is measured by
the dimensionless thermoelectric �gure of merit ZTcharge,
de�ned as ZTcharge = GS2T/κ. Here, T stands for the
temperature, G is the charge conductivity, S is the See-
beck coe�cient, and κ is the total thermal conductivity.
ZTcharge > 1 is required for good heat to charge volt-
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age converters. When the spin accumulation exist in the
external leads, one can introduce a spin analog of the �g-
ure of merit, given by ZTspin = GsS

2
s T/κ, where Gs and

Ss denote the spin conductance (normalized to ~/2e) and
the spin Seebeck coe�cient, respectively. The system is a
good heat to spin-voltage converter when ZTspin > 1 [8].
A considerable spin thermoelectric e�ciency has been

reported in one- and two-level quantum dots attached to
ferromagnetic leads in which spin accumulation is admit-
ted [9, 10]. Moreover, further increase of the e�ciency
has been obtained when one of the dot's levels is partially
decoupled from the leads [10, 11]. Additional increase of
the thermoelectric e�ciency can be achieved owing to
quantum interference e�ects [12] in the presence of indi-
rect (via the leads) tunneling [13] between di�erent levels.
In this paper we consider a system consisting of a

two-level quantum dot attached to ferromagnetic leads,
whose magnetic moments are collinear. In general, both
intralevel and interlevel Coulomb interactions are taken
into account. Moreover, we assume an indirect coupling
of the dot's levels via the electrodes, which leads to quan-
tum interference e�ects. In the limit of no indirect cou-
pling, the considered system is equivalent to that inves-
tigated in Refs. [10] and [11]. The basic thermoelectric
characteristics are calculated using the nonequilibrium
Green function approach with the relevant approxima-
tion for the Coulomb interactions. We show that the
interference e�ects can signi�cantly enhance the thermo-
electric e�ciency of the system.

2. Model and thermoelectric coe�cients

The system consisting of a two-level quantum dot cou-
pled to ferromagnetic reservoirs is described by the An-
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derson Hamiltonian of the following form, H = Hc +

Hd + HT. The �rst term, Hc =
∑

kβσ εkβσa
†
kβσakβσ,

describes the left (β = L) and right (β = R) leads in
the non-interacting quasi-particle approximation. The
second term, Hd, describes the two-level quantum dot
isolated from the leads and acquires the following form:

Hd =
∑
iσ

εid
†
iσdiσ +

1

2

∑
ijσσ′

Uijniσnjσ′ , (1)

where εi stands for the spin degenerate energy level of

the dot, and niσ = d†iσdiσ is the corresponding level
occupation operator � both for i = 1, 2 and σ =↑, ↓.
The second term of Eq. (1) takes into account both
intra- and inter-level Coulomb repulsion. The last term,
HT, describes tunneling processes between the quan-
tum dot and electrodes, and takes the following form:
HT =

∑
kiσβ V

iσ
kβa

+
kβσdiσ + H.c., where V iσ

kβ are the rel-
evant matrix elements. The dot-lead coupling is param-

eterized by the linewidth function, Γβ
ijσ = 2πρσβV

β
i V β∗

j ,
where ρσβ is the density of states in the lead β for spin σ,

σ = + (−) for the spin majority (minority) electrons.
For the sake of simplicity we assume that the couplings
are independent of energy. The nondiagonal elements,

Γβ
īiσ

= qβ

√
Γβ
iiσΓ

β
ī̄iσ
, are crucial for the interference ef-

fects under considerations. Moreover, one can change
their impact on the thermoelectric phenomena by tun-
ing the parameters qL and qR. For simplicity, we assume
qL = qR ≡ q with q ∈ ⟨0, 1⟩. The spin-dependent dot-
-lead couplings for symmetric barriers are expressed in

the standard form: Γβ
iiσ = Γ (1± p) with p denoting spin

polarization of the lead β = L,R. As we are interested in
the spin Seebeck phenomenon, we consider only parallel
magnetic con�guration.

The spin Seebeck e�ect relies on the compensation of
spin-majority and spin-minority electron currents due to
the temperature gradient by an appropriate spin bias ap-
plied to the system. This situation can be described by
vanishing current in both spin channels. In the linear re-
sponse regime this leads to the following formulae for the
thermoelectric charge and spin Seebeck coe�cients [9],

S = − 1

2eT

(
L1↑

L0↑
+

L1↓

L0↓

)
, (2)

Ss = − 1

2eT

(
L1↑

L0↑
− L1↓

L0↓

)
, (3)

respectively. In turn, the thermal conductance κ is given
by

κ =
1

T

∑
σ

(
L2σ − L1σ

L0σ

)
. (4)

The charge and spin conductances are given by the fol-
lowing formulae: G = e2(L0↑ + L0↓) and Gs = e2(L0↑ −
L0↓), respectively. In the above formulae the integral
Liσ is de�ned as Liσ = −(2/h)

∫
dε(ε−µ)i(∂f/∂ε)Tσ(ε),

where f is the Fermi�Dirac distribution for equal chemi-
cal potentials and temperature T in both leads. Here,

Tσ(ε) is the transmission function for the σ channel,
which can be expressed in terms of the retarded and
advanced Green functions and the dot-lead coupling
strengths [13]. These Green functions have been cal-
culated from the relevant equation of motion with the
appropriate mean �eld approximation [14]. The explicit
form of the Green function and the used approxima-
tion can be found in Ref. [14]. The appropriate occupa-
tion numbers have been calculated self-consistently using
the identity, ⟨niσ⟩ = − i

∫
(dε/2π)G<

iσ, where the lesser
Green function has been calculated from the Keldysh
equation.

3. Numerical results and discussion

In the numerical calculations we assume the follow-
ing parameters: Γ = 0.1 meV, and ε2 = ε1 + ∆ε with
∆ε = 0.8 meV. Let us consider �rst the case with no
intra- and inter-level Coulomb interactions, Uij = 0
in the derived formulae. Figure 1 shows the charge

Fig. 1. Charge (a) and spin (b) �gure of merit as a
function of temperature, calculated for indicated val-
ues of the parameter q, Uij = 0, p = 0.3, and ε1 =
−0.2 meV.

(ZTcharge) and spin (ZTspin) �gures of merit as a func-
tion of temperature, calculated for di�erent values of the
parameter q. By tuning the parameter q, one can control
the indirect coupling strength of the dot's levels through
states of the electrodes. Both ZTcharge and ZTspin are
nonmonotonic function of temperature, with the corre-
sponding maxima at certain values of kT . In the case of
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ZTcharge, position of the maximum is roughly indepen-
dent of the parameter q. However, position of the rele-
vant maximum in the temperature dependence of ZTspin

shifts slightly towards lower temperatures as q increases.
One can observe that the indirect coupling strength has

a more signi�cant in�uence on ZTcharge than on ZTspin.
The charge �gure of merit �rst increases slightly with the
increase in q and then grows rapidly for q approaching 1.
One can note in Fig. 1a a signi�cant increase in ZTcharge

when q changes from q = 0.8 to q = 1. The charge
�gure of merit for q = 1 exceeds 1, which guarantees good
thermoelectric e�ciency of the system. On the other
hand, the increase in q seems to have a weak impact on
the maximum value of ZTspin (see Fig. 1b).

Fig. 2. Spin �gure of merit as a function of ε1 calcu-
lated for di�erent values of the spin polarization factor p,
and for Uij = U = 10 meV, kT = 0.1 meV, and q = 0.

Now, let us consider the in�uence of intra- and inter-
-level Coulomb repulsion. For simplicity we assume equal
Coulomb parameters, Uij = U . In Fig. 2 we show the
spin �gure of merit, ZTspin, as a function of dot energy
level ε1, calculated for di�erent values of the spin polar-
ization of the electrodes, and for U = 10 meV. From this
�gure follows that ZTspin exhibits structure consisting of
four groups of well resolved resonance-like peaks, sepa-
rated by the Coulomb gaps. For the considered parallel
magnetic con�guration, ZTspin strongly depends on the
magnitude of spin polarization of the leads, and signif-
icantly grows with increasing value of p. As the ZTspin

is mainly determined by spin conductance and spin ther-
mopower (i.e. the quantities which grow with increas-
ing p) and less by the thermal conductance (which ex-
hibits rather weak dependence on the leads polarization),
this behavior is rather clear and understandable.

4. Summary

Charge and spin Seebeck e�ects in spin polarized trans-
port through a system based on a two-level quantum
dot coupled to ferromagnetic leads has been studied with
the use of the non-equilibrium Green function approach.
Conclusions regarding the best parameters for the most

e�cient conversion of heat to spin voltage in such a sys-
tem can be summarized as follows. Firstly, the optimum
value of charge and spin �gures of merit can be found
by adjusting the temperature. Secondly, coupling of the
dot's energy levels via states in the reservoirs leads to
constructive interference which results in a high charge
thermoelectric e�ciency. Thirdly, generation of a spin
voltage in the system is greatly in�uenced by spin polar-
ization of the electrodes. The largest spin thermoelectric
e�ciency can be noticed for near half-metallic ferromag-
netic leads. Although the experimental realization of a
spin battery based on quantum dot systems is still a mat-
ter of time, theoretical examinations provide insight into
the nature of the e�ect, and also show how the e�ect can
be tuned by a diversity of physical phenomena.
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