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Singlet-Triplet Switching Induced by Electric Field
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We analyze in�uence of an external electric �eld on magnetic properties of a triple quantum dot system in
a triangular and linear geometry. The system contains four electrons and is described by an extended Hubbard
model which includes electron correlations and exchange processes. The electric �eld leads to splitting of energy
levels (the Stark e�ect) and to transition between the singlet and triplet states.

PACS: 71.10.�w, 33.57.+c, 73.23.�b, 73.63.Kv

1. Introduction

We present studies of an arti�cial molecule consisting
of three coherently coupled quantum dots with four elec-
trons which are placed in an external electric �eld. The
electric �eld acting on the atoms or molecules causes a
shift and splits of spectral lines. This e�ect is known
in literature as the Stark e�ect. Our studies show that
the electric �eld can also in�uence on magnetic proper-
ties of the system and one can see a transition between
singlet and triplet states. The singlet�triplet (S�T) tran-
sition was investigated in quantum dot systems by many
authors, as a function of magnetic �eld [1] or bias volt-
age [2]. Recently Baadji et al. [3] found that the S�
T transition can be induced by electric �eld in a real
linear molecule. They studied, by means of the density
functional theory (DFT), cobaltocene dimers, which con-
tained two magnetic centers connected by an acetylene
bridge. Adding di�erent substituents to the molecule di-
electric properties were changed and they observed the
S�T transition. In this paper we investigate the S�T
transition in a model of a three site molecule described
by an extended Hubbard Hamiltonian, which takes into
account electronic correlations and exchange processes.
Analyzing the spectrum for the molecule with a triangu-
lar and a linear geometry we show that the singlet�triplet
transition can occur for the triangular symmetry only.
We cannot con�rm the results for the linear molecule
studied in [3] for any moderated values of parameters.

2. Model

Our model of triple quantum dots (TQD) (see Fig. 1)
is described by an extended Hubbard model:
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Ĥ =
∑
i,σ

[ϵi + gE cos(θ + (i− 1)2π/3)]niσ

+
∑
i ̸=j,σ

tij(c
†
iσcjσ +H.c.) +

∑
i

Uini↓ni↑

−
∑
i ̸=j

JijSi · Sj , (1)

in which the �rst term shows in�uence of the electric
�eld E on a local site energy ϵi in the i-th quantum dot.
Here we assume that the polarization energy E · P =
e
∑

i E · rini = Eer
∑

i cos(θ+ (i− 1)2π/3), where e de-
notes the electron charge, ri is a vector to the i-th quan-
tum dot and θ is the angle between r1 andE. The second
term of the model (1) describes coherent electron hopping

Fig. 1. Model of TQD placed in an external electric
�eld E.

between nearest quantum dots, the third term � local
Coulomb interactions, whereas the last term � the direct
exchange coupling between spins in the nearest-neighbor
quantum dots. In general the exchange coupling Jij is
positive and prefers a ferromagnetic spin con�guration.
For some special cases, for example, for di�erent electron
orbitals and their speci�c orientation, it can take a neg-
ative value. The Hubbard model takes into account elec-
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tronic correlations and contains (in an implicit way) also
higher order exchange processes like a super- and double
exchange coupling [4]. An explicit form of the superex-
change coupling Jsuper can be obtained by a canonical
transformation [5, 6]. It is however very laborious task,
especially for the present case because one should make
calculations to a 4th order perturbation [7]. We there-
fore, perform an exact numerical analysis of the spectrum
and other properties of the system.
Moreover we assume that the system is isolated and

contains four electrons. For a real molecule placed be-
tween electrodes, constant number of electrons can be
hold in a wide range of parameters for �xed electrochem-
ical potentials. For our case the singlet state with the
total spin S = 0 is expressed as
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and the triplet state with S = 1
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Here we present the triplet for Sz = 0 only, because the

case for Sz = ±1 is obvious. The coe�cients |xS/T
ij |2 and

|xS
k |2 are derived from the Schödinger equation.

3. Results and discussion

Let us �rst consider a fully symmetric molecule with
the triangular geometry. In�uence of the electric �eld on
the energy of the two lowest states is shown in Fig. 2.
Here we denote gE = eEr. The top panels (a,b) are
plotted for t = 1. For Jd = 0 the ground state is singlet
in the whole range of gE and the singlet-triplet transition
does not occur (Fig. 2a). Figure 2b is plotted for a large
value of the direct exchange Jd = 0.8, which prefers the
ferromagnetic spin con�guration. As a result, the energy
of the singlet state is shifted up, whereas the energy of
triplet state goes down. At gE = 0 the ground state
is singlet and the S�T transition appears at gE ≈ 3.4.
However with an increase of the electric �eld another
transition occurs at gE ≈ 6.6 (not shown in the �gure)
and the ground state becomes again singlet.
The bottom panels in Fig. 2 present the position of

the singlet and the triplet states for the hopping integral

t = −1. Here at gE = 0 the ground state is triplet. Now
we have a transition from the triplet to the singlet state,
which occurs at gE ≈ 2.6 (Fig. 2c). As one can expect
the triplet�singlet transition is shifted to a higher value
of gE when Jd increases. For the parameters in Fig. 2d
the transition appears at gE ≈ 4.5. The S�T transition is
induced by the electric �eld and it is cause by competition
between the direct and superexchange processes.

Fig. 2. Singlet and triplet lowest state as a function of
the electric �eld for fully symmetric molecule: ϵ1 = ϵ2 =
ϵ3 = 0, U1 = U2 = U3 = 10, t12 = t13 = t23 = t, J12 =
J13 = J23 = Jd. The positive value of gE corresponds
to θ = 7π/6 and negative for opposite direction θ = π/6
(insets in plot a). The values of t and Jd are shown in
the plots.

Comparing the top and the bottom panels in Fig. 2 one
can see that the ground state of the triangular molecule
depends on the sign of the hopping parameter t. For a
negative value of t the ground state is triplet, while for
t > 0 the ground state is singlet. It is related with the
electron�hole asymmetry in the triangular system and
di�erent mobilities of the singlet and the triplet valence
bonds (see also [1]).

Fig. 3. Singlet and triplet lowest state as a function of
electric �eld for a linear symmetric molecule (a) with
ϵ1 = ϵ2 = 0 and a linear asymmetric molecule (b) with
ϵ1 = 0, ϵ2 = 2. The other parameters are taken as
t12 = 0, t13 = t23 = 1, Ui = 10, Jij = 0, ϵ3 = −6.
The same results are obtained for t13 = t23 = −1.
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Let us now consider the linear molecule M1 −B−M2,
composed of two magnetic centers M1 and M2 connected
by a bridge B (Fig. 3c). For the case studied by Baadji
[3] the magnetic centers are represented by cobaltocene
(or its derivative), which interact by the acetylene bridge.
In our model we assume that the central dot 3 is diamag-
netic with double electron occupation. Plots of the sin-
glet and the triplet lowest state with respect to the elec-
tric �eld are presented in Fig. 3a and b, for the symmetric
and asymmetric case, respectively. Here the asymmetry
of the molecule is modeled by a di�erence in local site
energies at the quantum dot 1 and 2. We have also inves-
tigated asymmetric molecules taking di�erent hoping pa-
rameters t13 ̸= t23, di�erent Coulomb interaction param-
eters U1 ̸= U2 and direct exchange couplings J13 ̸= J23.
For any set of moderate parameters the ground state is
singlet and the S�T transition does not occur. Moreover
one can see in Fig. 3 that the di�erence between the sin-
glet and the triplet state increases with gE which means
that the antiferromagnetic interaction increases as well.
We cannot con�rm the results by Baadji et al. [3], where
the transition from the singlet to the triplet state was
induced by electric �eld.

4. Summary

Summarizing, we investigated in�uence of the electric
�eld on magnetic properties of the triple quantum dot
system with four electrons. We performed exact numeri-
cal calculations for the ground state within the extended
Hubbard model taking into account electron correlations
and exchange processes. Two geometries were analyzed:
a triangular and linear molecule. We predict transitions
from the singlet to triplet state and from the triplet to
singlet state induced by electric �eld in the triangular
molecule. However for the linear molecule the ground
state is singlet for any moderate values of parameters
and the singlet�triplet transition does not occur. One can

expect that the predicted singlet-triplet switching e�ects
will be seen in measurements of electronic transport due
to the Pauli spin blockade [8]. Our model is general and
can be used for quantum dots, real molecular systems as
well as strong correlated electrons on lattices with a tri-
angular symmetry. The e�ects predicted can be applied
in new devices for spintronics and quantum computing.
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