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The influence of magnetic field on the sound attenuation is investigated in ferromagnets. With the aid of
the Nelson method we derive frequency-, magnetic field- and temperature-dependent expression for the sound
attenuation coefficient near a critical point in the Ising-type system. The shift of the ultrasonic attenuation peak
under the influence of magnetic field towards higher temperatures is discussed.
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1. Introduction

Many aspects of sound attenuation above and below
critical point have been discussed in the literature [1, 2].
However, little attention has been paid so far to crit-
ical attenuation in the presence of the magnetic field.
A notable exception are the mean-field theory results
[3-5]. The aim of this paper is to provide a dynamical
matching formalism of the renormalization group which
allows us to calculate the ultrasonic attenuation coeffi-
cient «a(t,w, H) by means of the e expansion not only
in the asymptotic region H = 0 but also in the whole
magnetic-field range. We implement the method used
in the calculation of the dynamic susceptibility in the
ordered phase [6] for the evaluation of the sound atten-
uation coefficient in an external magnetic field but use a
modified matching condition suitable for H # 0.

One of the best method for computation of the scaling
functions is the method introduced by Nelson [7] for com-
putation of the static correlation function above the criti-
cal temperature. It was a generalization of the renormal-
ization group technique developed by Nelson and Rud-
nick [8] used to obtain the equation of state to first or-
der in € = 4 — d as well as the scaling functions for the
susceptibility, specific heat and etc. both in the ordered
and disordered phase. Later this method was general-
ized by Achiam and Kosterlitz [9] to calculate the static
momentum-dependent correlation function for arbitrary
temperature and magnetic field. Dengler et al. [10] were
first who generalized this method into dynamic correla-
tion function in the disordered phase. In a recent paper
Pawlak and Erdem [6] extended these results by obtain-
ing (to first order in €) the expressions for the dynamic
susceptibility and correlation function for nonconserved
Ising order parameter both above and below the criti-
cal temperature in zero magnetic field. Generalization of
this method to nonzero fields will be used for calculation
of the ultrasonic attenuation.
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It is well known that in the absence of the magnetic
field, the critical behaviour of the sound attenuation coef-
ficient is characterized by the scaling relations [2, 11, 12].
at,w) o< w?|t| =P f+(y+), where fi are the scaling func-
tions above and below Tc, y+ = w7l |t|™*" the reduced
frequencies whereas w is the ultrasonic frequency; 79
are bare critical relaxation times for the order parameter
fluctuations (above and below T¢) and ps is the critical
sound attenuation exponent. In the magnets that have
also metallic properties large sound attenuation critical
exponents are usually measured [1, 2] and the so-called
Murata—Iro—Schwabl regime is expected [2, 12-14], where
ps = zv+a can be expressed by specific-heat («) and cor-
relation length (v = 1/X;) exponents and the dynamic
critical exponent z. In the absence of the magnetic field
the sound attenuation maximum as well as the sound ve-
locity minimum occur slightly below the transition tem-
perature, i.e. at the temperature at which the reduced
frequency y_ ~ 1. The peak in the sound attenuation
coefficient below the transition temperature is due to the
static polarization M = (S(z)) of the order parameter
and it is the analogue of the Landau—Khalatnikov (LK)
sound damping [3]. Tt is the only term which contributes
to a(t,w) in the mean-field theory.

The sound attenuation coeflicient and velocity are
strongly affected by an external magnetic field [1, 2, 5].
If the magnetic field is applied along the easy axis of a
ferromagnet, it was observed [1, 15] that the ultrasonic
attenuation peak is shifted towards higher temperatures
and can be located even at the temperatures much higher
than T¢. Our theory explains the magnetic field depen-
dence of ultrasonic attenuation. The shift of the attenua-
tion peak is due to a competition between the fluctuation
term (which is the only one present in zero magnetic field
above T¢) and the Landau—Khalatnikov term, which ap-
pears whenever a magnetization takes a non-zero value
(so also for T > Tc, H # 0). Only the Murata—TIro—
Schwabl regime is considered in this paper.
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2. Model and the solutions of the recursion
relations

We consider Ising-like (n = 1) continuous order pa-
rameter S with purely dissipative relaxational dynamics

. 0H
S =T 1
k 5S_k + Ckn ( )
and longitudinal sound mode @ obeying the equation
. SH )
= - — k>
Qk 50 . Qr + Nk, (2)

with the Ginzburg-Landau Hamiltonian

1
M= g 2 IS + R

+ ) 90kQrSk, Sk,

k.k1

u
+— > SkSk, SkyS—k—ky—ka: (3)
v
k.k1,k2
and the Gaussian white noises obeying the Einstein rela-
tions

(C(k, t)C(K ) =2I6(t — t')0k, i (4)
(n(k,t)yn(k',t')) = 20k>6(t — t')6p, _'. (5)

The scaling relation for the ultrasonic attenuation co-
efficient at the [-th stage of iteration is

al(w,T,u alwe?, (1), u
(M) _ gt ’<ffi’z l)<21>,M<l>>, (6)

where 7(1) = 7e2/Q(1)'/3, u(l) = ue /Q(1) and M (l) =
M e* ! are the renormalized temperature, coupling con-
stant, and magnetization at the [-th stage of the renor-
malization group with 7 = r + 6Kyu «x T — T, Ay, =
Blv =1—5+0(?), Ky = 1/87%, and Q(I) = 1+
36K u(e —1)/¢ [8].

The technique developed by Nelson consists in map-
ping the Hamiltonian out of critical regime into noncriti-
cal region with small correlation length, where the usual
perturbation expansion can be employed. Subsequently,
the quantity calculated in the noncritical regime is re-
lated by a renormalization group (RG) transformation
to the corresponding quantity in the critical region. The
original matching condition 7(I*)4+¢*e*" = 1 introduced
by Nelson [7] in order to evaluate the two-point correla-

tion function outside the critical region is replaced here
by

[(w/T)e Y% + [r (1) + 120 M(7)?]* =1, (7)

where we have fixed u at its fixed point value u, =
€/36K4 and used the fact that in the ultrasonic exper-
iments the wavelength is much longer than the correla-
tion length so we may take the wavevector ¢ = 0. The
perturbation expansion for a(we , 7(I*), M(I*)) is eas-
ily obtained

4/z
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a(we?” 7(I*), M(I* A M(1*)? .
( (we(zl*))2 ) = oed” { E((l*)) G(r)
F%ng;*) } G2 (1)
M(l*)Q * * *
— 48 o G () + 110 )}, (8)

1) = =2t sy w1 - 240
)

and A is a constant. It is a standard procedure [7, 9, 10]
to include in the static self-energy of the spin propaga-
tors the Hartree bubble given by an integral over the
exact correlation function. Since such diagram is inde-
pendent of the external frequency the matching condi-
tion (7) does not prevent it from being infrared singular
at 7 = 0. It can be however identified with the energy
at the [-th stage and its singularity can be exponentiated
by a similar procedure but with w-independent condition

(") M + 12u M (1%)2 el = 1, (9)
which leads to following expression for E(I*) |6, 9]:
E(*) = 20 (") — 7(I)® 217 4 M(1*)? ePAmFh=d)L
+0(€), (10)
where e” is expressed by 7(I*) and M (I*) from Eq. (9).

3. Magnetic field dependence of the
ultrasonic attenuation

The solutions of the matching conditions (7) and (9)
are homogeneous functions of the form

o =m VA E(s, 1), (11)

el =m(1*)V 2 a(s), (12)

where s = 2rm~ /8 x = 27(w/T")"Y*. We have

rescaled the magnetization by defining m? = 8u.M? and
then Eqgs. (7) and (9) can be written as

2zv

4<§) F(s,z)% + [sF(s,z)™ + 3F(s,x)2>‘m]2 =4,

(13)

sP(s)M + 3P (s)* m = 2. (14)

In order to obtain the magnetic field dependence of
a(w, 7, M) we need the equation of state which is the
solution of (14) and

P At +2A, —d 4 3 AN, —d
i = e O

where h is a reduced magnetic field proportional to the

hm=% =




Magnetic Field Dependence of Critical Attenuation in Ferromagnet

module of the physical variable. In the critical point
7 =0 (s =0) we have f(0) = 1 and on the coexistence

curve (7 < 0) s = —1. We introduce now instead of s a
new variable v = 7h~Y/(v+8) which is related to s via
v=sf(s)" /O, (16)

where 7y and ¢ are the critical exponents. Solving Eq. (16)
B
for s(v) we obtain m(r, h) = ( 27 ) = |7/%m(v). The

s(v
function s(v) is shown in Fig. 1. Substitution of these
results into Eqgs. (6) and (8) gives our final expression for
the sound attenuation coefficient

a(w, 7, h) = Aw?|T|" g1 (v, 2), (17)

where g7 is a scaling function. Defining a proper reduced
frequency y in terms of x and v it is possible to change
variables to obtain

alw,r,h) = Aa12|7'|_”5§2(v,y)7 (18)

where g2 (v, y) is another scaling function.

The variable s as a function of the field vari-
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T

Fig. 2. The sound attenuation coefficient calculated to
O(e) as a function of the reduced temperature. The
values of reduced magnetic field are given for each curve.
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We have also analyzed the position of the maximum in
the sound attenuation coefficient as a function of the ex-
ternal magnetic field. Figure 2 shows that it is moved to-
wards the higher temperatures as the field increases. For
the temperatures far from the critical point the sound at-
tenuation coefficient decreases with increasing field below
Tc and increases above T¢. Such behaviour has been re-
ported in the experiments of Komatsubara et al. [15] for a
single crystal MnP. It is connected with the fact that the
dominant contribution to a(w, T, h) comes from the first
term (LK term) in Eq. (8) which not only decreases with
the increasing field but also “moves” towards the higher
temperatures. The last contribution in Eq. (8) (fluctua-
tion term) is an order of magnitude smaller than the LK
term but it decreases with A much slower than the first
contribution. Our analysis shows that maximum of the
fluctuation term also moves towards the higher tempera-
tures. The height of the ultrasonic attenuation maximum
decreases as h—**/(F+7) for high magnetic fields.
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