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The in�uence of magnetic �eld on the sound attenuation is investigated in ferromagnets. With the aid of
the Nelson method we derive frequency-, magnetic �eld- and temperature-dependent expression for the sound
attenuation coe�cient near a critical point in the Ising-type system. The shift of the ultrasonic attenuation peak
under the in�uence of magnetic �eld towards higher temperatures is discussed.
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1. Introduction

Many aspects of sound attenuation above and below
critical point have been discussed in the literature [1, 2].
However, little attention has been paid so far to crit-
ical attenuation in the presence of the magnetic �eld.
A notable exception are the mean-�eld theory results
[3�5]. The aim of this paper is to provide a dynamical
matching formalism of the renormalization group which
allows us to calculate the ultrasonic attenuation coe�-
cient α(t, ω,H) by means of the ϵ expansion not only
in the asymptotic region H = 0 but also in the whole
magnetic-�eld range. We implement the method used
in the calculation of the dynamic susceptibility in the
ordered phase [6] for the evaluation of the sound atten-
uation coe�cient in an external magnetic �eld but use a
modi�ed matching condition suitable for H ̸= 0.
One of the best method for computation of the scaling

functions is the method introduced by Nelson [7] for com-
putation of the static correlation function above the criti-
cal temperature. It was a generalization of the renormal-
ization group technique developed by Nelson and Rud-
nick [8] used to obtain the equation of state to �rst or-
der in ϵ = 4 − d as well as the scaling functions for the
susceptibility, speci�c heat and etc. both in the ordered
and disordered phase. Later this method was general-
ized by Achiam and Kosterlitz [9] to calculate the static
momentum-dependent correlation function for arbitrary
temperature and magnetic �eld. Dengler et al. [10] were
�rst who generalized this method into dynamic correla-
tion function in the disordered phase. In a recent paper
Pawlak and Erdem [6] extended these results by obtain-
ing (to �rst order in ϵ) the expressions for the dynamic
susceptibility and correlation function for nonconserved
Ising order parameter both above and below the criti-
cal temperature in zero magnetic �eld. Generalization of
this method to nonzero �elds will be used for calculation
of the ultrasonic attenuation.
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It is well known that in the absence of the magnetic
�eld, the critical behaviour of the sound attenuation coef-
�cient is characterized by the scaling relations [2, 11, 12].
α(t, ω) ∝ ω2|t|−ρsf±(y±), where f± are the scaling func-
tions above and below TC, y± = ωτ0±|t|−zν the reduced
frequencies whereas ω is the ultrasonic frequency; τ0±
are bare critical relaxation times for the order parameter
�uctuations (above and below TC) and ρs is the critical
sound attenuation exponent. In the magnets that have
also metallic properties large sound attenuation critical
exponents are usually measured [1, 2] and the so-called
Murata�Iro�Schwabl regime is expected [2, 12�14], where
ρs = zν+α can be expressed by speci�c-heat (α) and cor-
relation length (ν = 1/λt) exponents and the dynamic
critical exponent z. In the absence of the magnetic �eld
the sound attenuation maximum as well as the sound ve-
locity minimum occur slightly below the transition tem-
perature, i.e. at the temperature at which the reduced
frequency y− ≈ 1. The peak in the sound attenuation
coe�cient below the transition temperature is due to the
static polarization M = ⟨S(x)⟩ of the order parameter
and it is the analogue of the Landau�Khalatnikov (LK)
sound damping [3]. It is the only term which contributes
to α(t, ω) in the mean-�eld theory.
The sound attenuation coe�cient and velocity are

strongly a�ected by an external magnetic �eld [1, 2, 5].
If the magnetic �eld is applied along the easy axis of a
ferromagnet, it was observed [1, 15] that the ultrasonic
attenuation peak is shifted towards higher temperatures
and can be located even at the temperatures much higher
than TC. Our theory explains the magnetic �eld depen-
dence of ultrasonic attenuation. The shift of the attenua-
tion peak is due to a competition between the �uctuation
term (which is the only one present in zero magnetic �eld
above TC) and the Landau�Khalatnikov term, which ap-
pears whenever a magnetization takes a non-zero value
(so also for T > TC, H ̸= 0). Only the Murata�Iro�
Schwabl regime is considered in this paper.
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2. Model and the solutions of the recursion

relations

We consider Ising-like (n = 1) continuous order pa-
rameter S with purely dissipative relaxational dynamics

Ṡk = −Γ
δH
δS−k

+ ζk, (1)

and longitudinal sound mode Q obeying the equation

Q̈k = − δH
δQ−k

− θk2Q̇k + ηk, (2)

with the Ginzburg�Landau Hamiltonian

H =
1

2

∑
k

(r + k2)|Sk|2 + k2c20L|Qk|2

+
∑
k,k1

g0kQkSk1
S−k−k1

+
u

V

∑
k,k1,k2

SkSk1
Sk2

S−k−k1−k2
, (3)

and the Gaussian white noises obeying the Einstein rela-
tions⟨

ζ(k, t)ζ(k′, t′)
⟩
= 2Γδ(t− t′)δk,−k′ , (4)⟨

η(k, t)η(k′, t′)
⟩
= 2θk2δ(t− t′)δk,−k′ . (5)

The scaling relation for the ultrasonic attenuation co-
e�cient at the l-th stage of iteration is

α(ω, τ, u,M)

ω2
= eρsl/ν

α(ω ezl, τ(l), u(l),M(l))

(ω ezl)2
, (6)

where τ(l) = τ e2l/Q(l)1/3, u(l) = ueϵl/Q(l) and M(l) =
M eλml∗ are the renormalized temperature, coupling con-
stant, and magnetization at the l-th stage of the renor-
malization group with τ = r + 6K4u ∝ T − Tc, λm =
β/ν = 1 − ϵ

2 + O(ϵ2), K4 = 1/8π2, and Q(l) = 1 +

36K4u(e
ϵl − 1)/ϵ [8].

The technique developed by Nelson consists in map-
ping the Hamiltonian out of critical regime into noncriti-
cal region with small correlation length, where the usual
perturbation expansion can be employed. Subsequently,
the quantity calculated in the noncritical regime is re-
lated by a renormalization group (RG) transformation
to the corresponding quantity in the critical region. The
original matching condition τ(l∗)+q2 e2l

∗
= 1 introduced

by Nelson [7] in order to evaluate the two-point correla-
tion function outside the critical region is replaced here
by [

(ω/Γ )ezl
∗]4/z

+
[
τ(l∗) + 12ucM(l∗)2

]2
= 1, (7)

where we have �xed u at its �xed point value uc =
ϵ/36K4 and used the fact that in the ultrasonic exper-
iments the wavelength is much longer than the correla-
tion length so we may take the wavevector q = 0. The
perturbation expansion for α(ω ezl

∗
, τ(l∗),M(l∗)) is eas-

ily obtained

α(ω ezl
∗
, τ(l∗),M(l∗))

(ω ezl∗)2
=

A

ω ezl∗
Im

{
M(l∗)2

E(l∗)
G(l∗)

+

[
24ucM(l∗)2

E(l∗)

]2
G(l∗)2Π (l∗)

− 48uc
M(l∗)2

E(l∗)
G(l∗)Π (l∗) +Π (l∗)

}
, (8)

where

G(l∗) = [1− iw(l∗)]−1, w(l∗) = ω ezl
∗
/E(l∗)Γ ,

Π (l∗) = −K4

4

{
lnE(l∗) + ln

[
1− iw(l∗)

2

]

+
2i

w(l∗)
ln

[
1− iw(l∗)

2

]}
and A is a constant. It is a standard procedure [7, 9, 10]
to include in the static self-energy of the spin propaga-
tors the Hartree bubble given by an integral over the
exact correlation function. Since such diagram is inde-
pendent of the external frequency the matching condi-
tion (7) does not prevent it from being infrared singular
at τ = 0. It can be however identi�ed with the energy
at the l-th stage and its singularity can be exponentiated
by a similar procedure but with ω-independent condition

τ(l∗)eλtL + 12ucM(l∗)2 e2λmL = 1, (9)

which leads to following expression for E(l∗) [6, 9]:

E(l∗) = 2τ(l∗)− τ(l∗)eαL/ν +M(l∗)2 e(2λm+λt−d)L

+O(ϵ2), (10)

where eL is expressed by τ(l∗) and M(l∗) from Eq. (9).

3. Magnetic �eld dependence of the

ultrasonic attenuation

The solutions of the matching conditions (7) and (9)
are homogeneous functions of the form

el
∗
= m−1/λmF (s, x), (11)

eL = m(l∗)−1/λmΦ(s), (12)

where s = 2τm−1/β , x = 2τ(ω/Γ )−1/zν . We have
rescaled the magnetization by de�ning m2 = 8ucM

2 and
then Eqs. (7) and (9) can be written as

4
( s

x

)2zν

F (s, x)2z +
[
sF (s, x)λt + 3F (s, x)2λm

]2
= 4,

(13)

sΦ(s)λt + 3Φ(s)2λm = 2. (14)

In order to obtain the magnetic �eld dependence of
α(ω, τ,M) we need the equation of state which is the
solution of (14) and

hm−δ =
sΦ(s)λt+2λm−d + Φ(s)4λm−d

Φ(0)4λm−d
≡ f(s), (15)

where h is a reduced magnetic �eld proportional to the
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module of the physical variable. In the critical point
τ = 0 (s = 0) we have f(0) = 1 and on the coexistence
curve (τ < 0) s = −1. We introduce now instead of s a
new variable v = τh−1/(γ+β) which is related to s via

v = sf(s)−1/(γ+β), (16)

where γ and δ are the critical exponents. Solving Eq. (16)

for s(v) we obtain m(τ, h) =
(

2τ
s(v)

)β

≡ |τ |βm̂(v). The

function s(v) is shown in Fig. 1. Substitution of these
results into Eqs. (6) and (8) gives our �nal expression for
the sound attenuation coe�cient

α(ω, τ, h) = Aω2|τ |−ρs ĝ1(v, x), (17)

where ĝ1 is a scaling function. De�ning a proper reduced
frequency y in terms of x and v it is possible to change
variables to obtain

α(ω, τ, h) = Aω2|τ |−ρs ĝ2(v, y), (18)

where ĝ2(v, y) is another scaling function.

Fig. 1. The variable s as a function of the �eld vari-
able v.

Fig. 2. The sound attenuation coe�cient calculated to
O(ϵ) as a function of the reduced temperature. The
values of reduced magnetic �eld are given for each curve.

We have also analyzed the position of the maximum in
the sound attenuation coe�cient as a function of the ex-
ternal magnetic �eld. Figure 2 shows that it is moved to-
wards the higher temperatures as the �eld increases. For
the temperatures far from the critical point the sound at-
tenuation coe�cient decreases with increasing �eld below
TC and increases above TC. Such behaviour has been re-
ported in the experiments of Komatsubara et al. [15] for a
single crystal MnP. It is connected with the fact that the
dominant contribution to α(ω, τ, h) comes from the �rst
term (LK term) in Eq. (8) which not only decreases with
the increasing �eld but also �moves� towards the higher
temperatures. The last contribution in Eq. (8) (�uctua-
tion term) is an order of magnitude smaller than the LK
term but it decreases with h much slower than the �rst
contribution. Our analysis shows that maximum of the
�uctuation term also moves towards the higher tempera-
tures. The height of the ultrasonic attenuation maximum
decreases as h−zν/(β+γ) for high magnetic �elds.
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