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The reported measurements of the angular dependence of ferromagnetic resonance spectra and their
theoretical interpretation lead to the observation that a discrepancy occurs between the theory and the experiment
in certain ranges of the con�guration angle. This disagreement cannot be eliminated within the Smit�Beljers
model commonly used in the literature for the description of ferromagnetic resonance in thin �lms since the main
ferromagnetic resonance line observed in thin �lms is not necessarily associated with the excitation of a uniform
mode, as the Smit�Beljers model does assume for bulk samples. Instead, we associate this line with the excitation
of a surface mode or the thin-�lm principal nonuniform mode. By taking into account the occurrence of a surface
spin-pinning anisotropy, this assumption allows to obtain an agreement between the theoretical description of the
ferromagnetic resonance and the experimental data in the whole range of angular con�guration of the external
�eld. As an example, on the basis of this modi�ed ferromagnetic resonance model, we make some observations on
the angular resonant dependence in uniaxial thin �lms.
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1. Introduction

Ferromagnetic resonance (FMR) in thin �lms is fre-
quently studied versus the con�guration of the external
�eld with respect to the ferromagnetic �lm surface (see,
e.g. [1�3]). The resonance spectrum can include multi-
ple peaks or a single peak alone. In the former case it
is referred to as a spin-wave resonance (SWR) spectrum,
while a single-peak spectrum is regarded as a classic fer-
romagnetic resonance one. In this paper we discuss the
con�gurational dependence of the resonance �eld of the
single FMR line or, in the case of SWR, the �rst main line
(of the sequence of resonance lines ordered with decreas-
ing resonance �elds). Experimentalists tend to use the
classic Smit�Beljers (S�B) resonance formula [4, 5] for the
theoretical description of the dependence of the resonance
�eld corresponding to this main FMR line on the angle
θH between the �lm normal and the external �eld. How-
ever, very often the Hexp

res (θH) dependence found in the
experiment proves to di�er from the theoretical depen-
dence HS−B

res (θH) calculated in the Smit�Beljers model in
certain ranges of θH . In this study we discuss the possible
causes of this interpretational discrepancy.
The �rst observation to be made in our considerations

is that the S�B formula was originally derived for bulk
materials, large enough to neglect the e�ect of boundary
conditions and therefore assume that a so-called uniform
mode, with wave vector k[kx, ky, kz] ≡ 0, is excited in the
FMR. However, this assumption cannot be made without
reservations in the case of thin �lms. Even when the �lm
is very large in the directions parallel to its surface we
can at most assume k∥[kx, ky] ≡ 0; a similar assumption
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for the wave-vector component perpendicular to the �lm
would be unjusti�ed. We must assume that in general
k⊥ ̸= 0 in thin �lms.
It is a well-known fact that the boundary conditions

implied by the occurrence of the two surfaces in a thin
�lm determine the allowed sequence of k⊥ values associ-
ated with the respective standing spin waves that form in
the direction perpendicular to the �lm. In this sequence,
the wave number k⊥ corresponding to the principal har-
monic � or the fundamental mode, corresponding to the
strongest resonance �eld � is not necessarily identical
with zero; in general we must assume that, due to the
boundary conditions, kfund⊥ ̸= 0. We argue that the con-
dition kfund⊥ ≈ 0 is only ful�lled in those ranges of the
angle θH in which the experimental resonance �elds cor-
respond to the S�B resonance curve; in the other regions,
in which a discrepancy occurs between the theoretical
and experimental results, we allow for a nonuniform res-
onance mode with kfund⊥ substantially di�erent from zero.
The additional exchange energy related to the excitation
of this nonuniform mode with kfund⊥ ̸= 0 is the very cause
of the discrepancy between the resonance �eld H fund

res (θH)
found experimentally and the value calculated by the S�B
formula derived on the assumption that kfund⊥ ≡ 0. This
idea will be set out below in detailed considerations based
on the quantum theory of SWR we have developed and
presented in our previous publications [6�9].

2. Application of Smit�Beljers resonance

formula to thin �lms

Let us consider the simplest example of ferromagnetic
thin �lm with uniaxial anisotropy, discussed recently e.g.
by Beaujour et al. [10, 11]. We shall regard the free
energy E of the sample as the sum of the Zeeman, de-
magnetization and uniaxial anisotropy energies
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E = −M ·H + 2π(M · n)2 −K(M · u/M)2, (1)

where M is the magnetization, H is the applied mag-
netic �eld, n denotes a unit vector in the direction nor-
mal to the �lm surface, u is a unit vector in the direction
of the easy-magnetization axis, and K denotes the e�ec-
tive uniaxial anisotropy constant. We shall henceforth
assume u = n; thus, the free energy can be expressed as

E = −MH(sin θ sin θH + cos θ cos θH)

+ (2πM2 −K) cos2 θ. (2)

In the derivation of the above formula we have assumed
that the �lm surface de�nes the (x, y) plane; z is the
direction normal to this plane; θ and θH are the angles
between the magnetization M or the external �eld H,
respectively, and the normal to the �lm surface; both M
and H are assumed to lie in the (z, y) plane. The Smit�
Beljers resonance formula reads [4, 12]:(

ω

γ

)2

=
1

M2 sin2 θ

[
∂2E

∂ϕ2

∂2E

∂θ2
−

(
∂2E

∂ϕ∂θ

)2
]
, (3)

where ω is the angular resonance frequency, and γ
(= gµB/~) is the gyromagnetic ratio. The following con-
�gurational resonance condition (that allows also for the
perpendicular con�guration of the external �eld, θH ≡
θ = 0) results from (2) and (3):(

ω

γ

)2

= [H cos(θ − θH)− (4πM − 2K/M) cos 2θ]

×
[
H cos(θ − θH)− (4πM − 2K/M) cos2 θ

]
; (4)

for a given direction θH of the applied magnetic �eld the
equilibrium position θ of the magnetization is calculated
from the condition ∂E/∂θ = 0 and is given by the rela-
tion

2Hres sin(θ − θH) = (4πM − 2K/M) sin 2θ. (5)

Let us introduce, for convenience, a quantity referred to
as e�ective demagnetization �eld Meff , de�ned [10, 11]
as:

4πMeff = 4πM − 2K/M. (6)

To realize well the limitations to be taken into consid-
eration when the Smit�Beljers resonance formula (4) is
used in the theory of thin �lms, let us refer now to the mi-
croscopic theory of ferromagnetic resonance in thin �lms.
The pertinent case of thin �lm with a �perpendicular�
uniaxial anisotropy is considered within the microscopic
model in our earlier papers [9, 13], which we shall now
refer to. In these papers the uniaxial anisotropy energy is
expressed by the following single-ion term of the Hamil-
tonian:

Ĥanis = −D(l)
∑
lj

(
Ŝz
lj

)2

, (7)

where lj de�nes the position of the given spin: l la-
bels the atomic plane (parallel to the �lm surface) and j
is a two-dimensional vector de�ning the position of the
spin in the l-th plane; D(l) denotes the single-ion uni-
axial anisotropy constant for a spin in the l-th atomic
plane. Now, the resonance condition obtained in [9] [see

Eq. (5.7)] can be expressed by the material quantities
de�ned at the macroscopic level and introduced above;
we shall use as the basis the following identity relations
between the microscopic and macroscopic quantities �
for the e�ective demagnetization �eld and the exchange
constant, respectively

4πMeff = −2DS

gµB
, Dex =

2Sz⊥Ja
2

gµB
. (8)

The meaning of the microscopic quantities (at the right
side of the above equalities) introduced in [9] is the follow-
ing: D is the uniaxial (single-ion) anisotropy constant, S
denotes the spin (in ~ units), J is the nearest-neighbor
exchange integral, 2z⊥ is the number of nearest neigh-
bors lying in adjacent atomic planes, and a denotes the
lattice constant. Expressed by the macroscopic quanti-
ties introduced above, the resonance condition obtained
within the microscopic model in [9] becomes now(

ω

γ

)2

=
[
H cos(θ − θH)− 4πMeff cos 2θ +Dexk

2
⊥
]

×
[
H cos(θ − θH)− 4πMeff cos2 θ +Dexk

2
⊥
]
, (9)

where Dex is the exchange constant, and k⊥ denotes the
wave number of the standing spin wave. Note that Eq. (9)
is known in the literature for years (cf., e.g. [1, 14]);
however, its derivation here has led us to formulate the
identity relations (8), which shall be of much use in our
further considerations. The resonance condition (9) cor-
responds to the excitation of a standing spin wave with
wave number k⊥; only for the excitation of a uniform
mode (k⊥ = 0) does this condition reduce to the Smit�
Beljers formula (4). However, it should be stressed that
k⊥ = 0 only in a special case that corresponds to a thin
�lm without any surface anisotropy! This means that �
reversing the direction of our reasoning � if we want to
use the Smit�Beljers formula for the description of the
main resonance line in a thin-�lm spectrum, we must al-
low for the fact that in general this line can correspond to
the excitation of a nonuniform fundamental mode (with
a nonzero wave number, kfund ̸= 0); therefore, an extra
energy term, corresponding to the energy of excitation of
this mode, must be added in the S�B resonance condition(

ω

γ

)2

= (10)[
H cos(θ − θH)− 4πMeff cos 2θ +Dex

(
kfund⊥

)2]
×
[
H cos(θ − θH)− 4πMeff cos2 θ +Dex

(
kfund⊥

)2]
.

The additional exchange energy term introduced above,
+Dexk

2
fund, changes the angular dependence of the res-

onance �eld Hres = Hres(θH) resulting solely from the
condition (4), since in general the boundary conditions
impose also the angular dependence kfund = kfund(θ) of
the fundamental mode. The con�gurational dependence
of the fundamental mode in uniaxial thin �lms is dis-
cussed in detail in the next paragraph.
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3. Con�gurational dependence of the thin-�lm

fundamental mode

The value of the wave number kfund⊥ of the fundamental
mode in a thin �lm is determined by the boundary con-
ditions on the �lm surfaces. In the microscopic theory of
spin waves the boundary conditions are described by the
surface pinning parameter, which measures the degree
(strength) of �pinning� of the surface spins. (A corre-
lated �pinning� quantity is the surface anisotropy energy,
used in the macroscopic description of spin waves in thin
�lms.) If the thin �lm under consideration meets the as-
sumptions of the surface inhomogeneity (SI) model [6�9]
the formula for the surface parameter can be derived in a
way analogical to that presented in our earlier paper [13].
In the case considered here the result is

A = 1− Db −Ds

2z⊥J
(1− 3 cos2 θ), (11)

whereDb andDs denote the bulk and surface microscopic
uniaxial anisotropy constants, respectively. Now, using
the identity relations (8) we get the formula in which the
surface parameter is expressed by macroscopic quantities

A(θ) = 1− 1

2

[
4π

(
M surf

eff −Mbulk
eff

) a2

Dex

]
(1− 3 cos2 θ);

(12)

the e�ective demagnetization �elds M surf
eff and Mbulk

eff
in (12) are as de�ned in (6) with substituted surface or
bulk quantities, M surf and Ksurf or Mbulk and Kbulk, re-
spectively. The surface parameter A proves to depend on
θ when the e�ective demagnetization �elds at the surface
and in the bulk are di�erent, i.e.

∆Meff ≡ M surf
eff −Mbulk

eff ̸= 0. (13)

If the condition (13) is ful�lled the surface parameter A
varies with the angle θ by oscillating around A = 1, the
value corresponding to a certain angle � let us refer to
it as critical angle � for which (1− 3 cos2 θ) ≡ 0.
Figure 1 (based on our earlier papers [6�9]) presents

the pro�les of the fundamental mode corresponding to
di�erent values of A. The fundamental mode is seen to be
a uniform mode only for the particular surface parameter
value A = 1 (which implies the lack of surface anisotropy)
corresponding to the critical angle; for A < 1 the funda-
mental mode is a principal nonuniform bulk mode, and
becomes a surface mode for A > 1. Thus, the applica-
tion of the S�B formula to thin �lms is only justi�ed for
the external �eld con�guration corresponding to the crit-
ical angle; for any other angle the formula does not apply!
For this very reason the resonance curve Hres = Hres(θH)
found experimentally di�ers (in some cases) from the the-
oretical curve based on the Smit�Beljers model (see, e.g.,
[1, 2]).

4. Conclusion

In the present paper we argue that the Smit�Beljers
resonance formula can only be applied to thin �lms with-
out surface anisotropy, i.e. with surface spins pinned to

Fig. 1. Pro�les of the thin-�lm fundamental standing
spin-wave mode given by the surface inhomogeneity
model for di�erent values of surface pinning parame-
ter A. Only for a well-de�ned value of A = 1 the funda-
mental mode has the uniform pro�le corresponding to a
zero wave number k⊥ of the component perpendicular
to the �lm surface. For A > 1 the fundamental mode
is surface-localized, and for A < 1 the principal bulk
spin-wave mode in the thin �lm resembles the �rst har-
monic mode of string vibration (d = 10a denotes the
�lm thickness).

the extent corresponding to their natural freedom only
resulting from the presence of the surface. Only in this
case the fundamental mode excited in ferromagnetic reso-
nance is the uniform mode for which the S�B formula was
derived. In the case of additional surface spin pinning due
to the surface anisotropy the fundamental mode is not
uniform, and the application of the classical S�B formula
to the description of FMR in thin �lms is unjusti�ed. To
become applicable, the formula must be completed by an
extra energy term, +Dexk

2
fund, corresponding to the ex-

change energy of excitation of the nonuniform (kfund ̸= 0)
fundamental mode (see (10)).

We have also demonstrated that in the case of uniaxial
surface anisotropy the nature of the fundamental mode
in the thin �lm changes with the con�guration of the ex-
ternal magnetic �eld with respect to the �lm surface: it
is a bulk mode in some ranges of the con�guration an-
gle, but in other ranges � the fundamental mode is of
surface localized character. This �nding allows to hope
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that the disagreement observed between the experimen-
tal and theoretical (based on the classical S�B formula)
con�gurational dependences of the resonance �eld of the
main FMR line will be eliminated if the main resonance
mode is assumed to be in general nonuniform. Moreover,
an appropriate �tting procedure when used for the elimi-
nation of this discrepancy can yield precious information
on the nature of the surface anisotropy. We shall discuss
this problem in another paper.
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