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The phase transition line near the Ising point region is studied for the 3D standard Ashkin�Teller model
on a cubic lattice. This model with a multicomponent order parameter is one of the important reference points
in statistical physics since it shows an interesting and complicated phase diagram. The main motivation for our
study was nonuniversal behavior suggested for this line. The large-scale Monte Carlo simulations using the Binder
and Challa like cumulants are performed. Accurate analysis to exclude the latent heat inherence is applied.
Speci�c behavior of the Challa like cumulants is discovered and its interpretation is proposed. The paper is closed
with preliminary conclusions concerning the continuous but non-Ising character of these phase transitions in the
lower part of the mixed phase region and the possiblity of the �rst order on the line connecting it to the Ising point.
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1. Ashkin�Teller model

Ashkin and Teller proposed their lattice model for four-
-component mixture [1]. The interest in this model sig-
ni�cantly increased when Fan showed [2] that this model
could be expressed in terms of two Ising models put on
the same lattice with spins si and σi at each lattice site,
respectively. We consider only two-spin interactions of
a constant magnitude J2 between the nearest neighbors.
We can extend these independent Ising models to the
Ashkin�Teller (AT) by coupling the two Ising models
with a four-spin interaction of a constant magnitude J4,
also only between couples of nearest-neighboring spins.
Thus, the Hamiltonian H of the AT model is of the form

− H

kBT
=

∑
[i,j]

[K2(sisj + σiσj) +K4siσisjσj ], (1)

where [i, j] denotes summation over nearest-neighboring
lattice sites, Ki = −Ji/kBT , with i = 2 or 4, and T is the
temperature of the system. We call it the standard AT
model, as there are many extensions of the AT model.
The research done for this model is summarized in the

caption of Fig. 1 (for details and applications of the model
see e.g. [3, 4]) where the symbol ⟨. . .⟩ denotes the thermal
average. Thus the symbol ⟨sσ⟩ stands for the thermal
average of the variable sσ, the product of the spins s
and σ, both on the same lattice site.
The aim of this paper is to perform a thorough analyses

of the regions of the phase diagram where the nonuniver-
sal behavior of the 3D standard AT model was signalized
(see [3] and the papers cited therein). The boundaries
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of the mixed phase region ⟨s⟩ (see Fig. 1) and the local-
ization of the tricritical point H were investigated and
the deviations from the Ising character of phase transi-
tions on the line AHK ′ were reported by Musiaª and
Rogiers [3], whereas the localization of the remaining tri-
critical points K, K ′, F, G were examined by Musiaª [5].
It is worth noting that a weakly �rst order phase transi-
tions appear in the right vicinity of point A [6]. In this
context the interesting question arises of a possible varia-
tion of values of critical exponents along the line AHK ′,
like in the 2D version of this model.
We have concentrated our main attention on the line

AH (see Fig. 1), but the analysis was also performed for
the line HK ′. We undertook a Monte Carlo (MC) study
with the method developed by Musiaª [5], as the latent
heat occurrence should be excluded, before the further
research of the universality class of phase transitions. It
is absolutely clear that at the starting point A there is no
latent heat, as here we have the pure Ising model with fer-
romagnetic interactions between the nearest neighbors.

2. The Monte Carlo simulations

To predict the behavior of a system with a large num-
ber of degrees of freedom, we perform the MC simula-
tions. Using the tools of statistical mechanics a com-
puter experiment is performed to predict the equilibrium
behavior of a system for which the behavior is deter-
mined by the Hamiltonian (1). Equilibrium con�gura-
tions of �nite-size cubic spin samples of the size L×L×L
(16 ≤ L ≤ 24) have been generated for �xed values of
the model parameters described in the Hamiltonian (1),
using the Metropolis algorithm. Periodic boundary con-
ditions were imposed and thermalization of the length of
105 to 106 Monte Carlo steps (MCS) was applied. One
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Fig. 1. The present state of knowledge about the phase
diagram of the 3D Ashkin�Teller model on a cubic lat-
tice. The broken lines denote the �rst order phase tran-
sitions, whereas the solid lines denote the continuous
ones. In the phase labeled �Baxter� the system is ferro-
magnetically ordered with all order parameters ⟨s⟩, ⟨σ⟩
and ⟨sσ⟩ nonzero, whereas in the phase labeled �para�
they are all zero. In the phases �⟨sσ⟩F� and �⟨sσ⟩AF�
we have ⟨s⟩ = ⟨σ⟩ = 0, and only the parameter ⟨sσ⟩
is ferromagnetically and antiferromagnetically ordered,
respectively. For the phase �⟨s⟩� called the mixed phase
region we have ⟨sσ⟩ = 0 and either ⟨s⟩ or ⟨σ⟩ is ferro-
magnetically ordered but the other is not. The positions
of labeled points inside the phase diagram are marked
by +, whereas the results of our MC simulations are
marked by ×.

MCS is completed when each of the lattice sites has been
visited once. A 64-bit random number generator was
used. Each MC run was split into k (10 ≤ k ≤ 20)
segments called partial averages consisting of about 107

MCS. In the calculation of the partial averages only every
i-th MC step contributed (8 ≤ i ≤ 10), to avoid correla-
tions between sampled microstates of spins in the system
and to sample microstates with the Gibbs distribution of
probability.

The phase transition points were localized for particu-
lar value of K4 coupling from the analysis of the Binder
cumulant QL dependence on the K2 coupling [4]:

QL =
⟨α2⟩2L
⟨α4⟩L

, (2)

where ⟨αn⟩L denotes the n-th power of the α spins or-
der parameter, with α = s, σ or sσ, averaged over an
assembly of independent samples of the size L × L × L,
as described in the previous paragraph. This is very con-
venient method of localization of points in the phase di-
agram, as it works well for both, the �rst order and the
continuous phase transitions.

To calculate the value of the latent heat, necessary
to distinguish between the �rst order and the continu-
ous phase transitions, together with the above mentioned
Binder cumulants we have calculated three Challa-like
cumulants [5] for particular value of K4 coupling

Vα,L = 1− ⟨E4
α⟩L

3⟨E2
α⟩2L

, (3)

where ⟨En
α⟩L denotes the n-th moment of the internal

energy E of α-spins (α = s, σ or sσ) averaged over an
assembly of independent samples of the size L × L × L,
as described in the �rst paragraph of this section. These
Challa-like cumulants are extremely useful to distinguish
between the �rst order phase transitions and the contin-
uous ones. For a continuous phase transition Vα,L = 2/3
in the limit L → ∞ and it remains �xed even far from
the critical temperature. In contrast, for the �rst order
phase transitions the dependence Vα,L(K2) has a mini-
mum. The value of this minimum V min

α,L and its local-

ization Kmin
2 scale linearly versus L−3 which allows one

to extrapolate the values of these two parameters to the
thermodynamic limit. The limit value of Kmin

2 is the
critical one (which gives the value of the critical temper-
ature). When the value of V min

α,L remains di�erent from

2/3, the phase transition is of the �rst order [5, 7].

3. Results and conclusions

We have localized the phase-transition points at par-
ticular values of the coupling K4 from the common in-
tersection point of the curves QL(K2), given by Eq. (2),
independently for order parameters ⟨s⟩, ⟨σ⟩ and ⟨sσ⟩ (for
details see e.g. [5, 8]). We are able to achieve the accuracy
of at least four decimal digits for both the �rst order and
the continuous phase transitions. The points for which
the analyses are reported in this paper are marked with ×
in Fig. 1. It is worth noting that the scatter of the re-
sults, as it is well known (see [5, 7, 8] and the papers cited
therein), is of at least one order of magnitude greater for
the �rst-order phase transitions when compared to the
continuous ones.

Fig. 2. The characteristic minima of the cumulant Vs,L

versus K2 for samples with di�erent linear sizes L, at
the �xed value of the coupling K4 = −0.04. The results
of our MC simulations are denoted by symbols, which
are explained in the legend box. Only the small regions
where cumulants are minimum are shown. These curves
are approximated by a polynomial of the fourth degree.
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The largest e�ort of our large-scale MC simulations
concerned the analyses of Challa-like cumulants de-
scribed in detail in our previous works [5, 9] and used
to analyze the tricritical behavior of the system in the
vicinities of points F, G, K, and K ′ (see Fig. 1). The
purpose of this paper is veri�cation of the latent heat ev-
idence on the line AHK ′. The exemplary results of these
analyses are shown in Fig. 2 at the �xed value of the cou-
pling K4 = −0.04 in the ferromagnetic region close to the
tricritical Ising point A. For clarity we have plotted re-
sults of our MC simulations only in the regions where
the cumulants Vs,L are minimum as a function of K2 for
di�erent system sizes L. Evidence of the deep minima
can be an important signal, but is not the proof of the
evidence of latent heat. We have to estimate the value of
the minimum of the cumulant Vs,L in the thermodynamic
limit.

Fig. 3. The values of minima V min
α,L extrapolated to the

thermodynamic limit for α = s and sσ, as explained
in the legend box, at the �xed value of the coupling
K4 = −0.04. The dependences are �tted by straight
dashed lines using the linear regression.

To average the scatter of the results and to determine
more precisely the ordinates V min

s,L and the abscissasKmin
2

of these minima under consideration the MC results in
Fig. 2 were approximated by a polynomial of fourth de-
gree. The �nite-size-scaling analysis of the ordinates of
the minima V min

α,L is illustrated in Fig. 3 for α = s and sσ.
The results for spins s and σ are similar because of sym-
metry of the Hamiltonian (1). The linear character of
the plots is clearly seen.
The thermodynamic limit value of the minimum of the

cumulant Vs,L is −0.006(4) and of the cumulant Vsσ,L is
−0.020(6) at K4 = −0.04. As pointed out in Sect. 2,
these values di�erent from 2/3 within the experimental
uncertainty mean that the phase transitions of all order
parameters ⟨s⟩, ⟨σ⟩ and ⟨sσ⟩ could be of the �rst order.

These values can be compared to the value 0.664, very
close to 2/3, for K4 = 0.04 where arbitrary weak �rst
order phase transitions can be observed [6]. The actual
problem is to calculate the values of the latent heat from
the estimated data of V min

α,∞ (α = s, σ or sσ), which seems
to be more complex in this region of the phase diagram
and needs further study.
One can ask why these minima have hot been seen be-

fore? The reason is the unexpectedly wide region of the
critical behavior of the system, as the distance from the
point of the phase transition to the minima region which
is about 0.1. This is probably also the cause of the spe-
ci�c behavior of the Challa-like cumulants in this region:
although the abscissas Kmin

2 of the minima of cumulant
Vα,L(K2) scale linearly versus L−3, the extrapolated val-
ues of K2 in the thermodynamic limit are not equal to
the critical ones.
We conclude that the phase transitions along the line

AH in Fig. 1 could be of the �rst order, but still some
questions remain. We observe no evidence of latent heat
along the line HK ′. Thus, we can con�rm our conclu-
sions from the paper [3] for the phase transitions along
the line HK ′.
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