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We study the spin polarized electron and hole tunneling transport through a graphene-based
ferromagnet(GF1)�insulator(GI1)�superconductor(GS)�insulator(GI2)�ferromagnet(GF2) junction. Proxim-
ity induced spin polarization and superconductivity in a graphene sheet are assumed to be created by
superconducting and ferromagnetic electrodes placed on the top of the graphene. Using a four-dimensional
version of the Dirac�Bogoliubov�de Gennes equation with appropriate boundary conditions we investigate the
tunneling processes through the junctions. In particular, we present calculations of the amplitudes of normal and
Andreev re�ections as a function of the energy of the incident electron for a wide range of the model parameters,
such as the strength and orientation of the exchange �eld, the barrier strength, and the distance between the
two ferromagnetic layers. The tunneling transport processes in the graphene-based double junction GF/GI/GS/
GI/GF are compared with those in non-graphene-based junctions.

PACS: 74.45.+c, 72.80.Vp, 72.25.−b

1. Introduction

During the last few years, graphene systems have re-
ceived considerable theoretical and experimental atten-
tion for their intriguing properties and possible device
applications. In graphene, the Fermi level is located be-
tween two symmetrical conical bands which touch the
Fermi energy at six discrete points called the Dirac points
located at the edges of the hexagonal Brillouin zone. This
implies the zero excitation energy near these points. It
was shown [1] that graphene has a linear Dirac-type en-
ergy spectrum near each six Dirac points. The linear
dispersion is valid up to 1 eV around the Dirac points,
which was recently observed in angle-resolved photo-
emission spectroscopy experiment [2]. This peculiar low-
-energy electronic structure implies that charge carriers
in graphene can be treated like massless relativistic par-
ticles. It leads to many unusual phenomena such as the
anomalous quantum Hall e�ect [3] or Klein paradox [4].
When epitaxially grown on a substrate, the graphene
systems exhibit new properties, such as ferromagnetism,
semiconductivity or superconductivity, which are deter-
mined by the proximity-like interactions with the sub-
strate. Unlike a normal metal, in graphene the energy
of injected electron can be easily and e�ciently con-
trolled by a gate voltage, which is very useful in stud-
ies of the charge transport through graphene-based junc-
tions. It was also shown that by changing the Fermi
energy EF via the gate voltage, graphene-based super-
conductor junctions can exhibit unique local and non-
-local specular Andreev re�ections [5]. This new type of
re�ection takes place in the weakly doped graphene, i.e.
when EF ≪ ∆ (∆ � the superconducting energy gap).
In this article, we analyse charge transport properties of
a graphene-based structure in which two ferromagnet or
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normal metals are separated from the superconducting
layer by two layers of insulating materials. We consider
both parallel and antiparallel alignment of magnetization
of the ferromagnetic metals. In particular, we calculate
the probabilities of the local and non-local Andreev re-
�ections as well as the transmission probability of the
elastic cotunneling. In the following we use the formal-
ism of Ref. [6] that was generalized to the spin dependent
quantum transport in non-graphene [7, 8] and graphene
based (e.g. Refs. [9, 10]) multiterminal junctions.

2. Model and calculations

We consider single particle transport in a graphene-
-based junction GM1/GI1/GS/GI2/GM2, consisting of
two metallic graphene (Mi, i = 1, 2) (normal or fer-
romagnetic) electrodes and a superconducting graphene
layer (S) separated from the electrodes by thin insulating
graphene interfaces (GIi, i = 1, 2). The ferromagnetism
and superconductivity in graphene are induced due to
the proximity e�ects by the ferromagnetic and supercon-
ducting electrodes, respectively, deposited on the top of
the junction. In this paper we have analysed the be-
haviour of the di�erent scattering probabilities. In par-
ticular, we have concentrated on the dependence of the
local (AR) and non-local (CAR) Andreev re�ections, and
the elastic cotunneling (ET) on the thickness L of the su-
perconducting layer. The values of the thickness should
be compared with the superconducting coherence length
given by ξ = hvF/π∆. A typical s-wave conventional
superconductor like aluminum has ξ = 1600 nm, and
similar values are asummed for the proximity induced
superconductor in graphene.
In our analysis we use the Dirac�Bogolyubov�de

Gennes (DBdG) equations [1] in the following form:(
Hασ − EF1̂ ∆(r)

∆†(r) −
[
Hασ − EF1̂

] )Ψα = EΨα, (1)

(1092)
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where Ψα = (ΨAασ,ΨBασ,Ψ
∗
Aα′σ,Ψ

∗
Bα′σ)

T stands for
four-component wave function and T is the transpose.
The subscripts have the following meaning: A and B de-
note the two sublattices of the graphene lattice, α (α′)
indicates the valley K (K ′) in the Brillouin zone. Index
σ = 1(↑) denotes the spin-up electron and the spin-down
hole, whereas σ = −1(↓) labels the spin-down electron
and the spin-up hole. The quasiparticle energy E is
measured from the Fermi energy EF, and around each
of the Dirac points, low energy electrons and holes have
linear dispersion. Thus, we get the conical-like conduc-
tion and valence bands which touch at each the Dirac
points. This is the origin of a graphene based gapless
semiconductor with a relativistic-like dispersion relation.
The single-particle Hamiltonian Hασ for K valley has the
form Hασ = − i~vF(σx∂x + σy∂y) +U(x)− σh(x), where
U(x) is the electrostatic potential which can be adjusted
via a gate voltage or doping. We assume U(x) = 0 for
x < −d and x > L + d in the GMi (i = 1, 2) regions,
U(x) = Vi (i = 1, 2) for −d < x < 0 and L < x < L + d
in insulating regions GIi (i = 1, 2), and U(x) = −U0 for
0 < x < L in the superconducting layer GS. For the fer-
romagnetic electrodes, we adopt the Stoner model with
the exchange �elds h(x) = hθ(−x− d) + hRθ(x−L− d),
and hR = h in the case of the parallel con�guration of the
ferromagnet electrodes, and hR = −h for the antiparallel
alignment.

The wave function, describing the quasiparticle prop-
agation across the junction, can be obtained from ex-
tended DBdG equations. The solution of Eq. (1) for all
regions of the junctions and for the injection of an elec-
tron with spin σ from the left/right (+/−) ferromagnetic
electrode, with the energy E, and the angle of incidence
Θ can be written in the following form:

in the ferromagnetic regions (x < −d or x > L+ d):

Ψ e
±(x) =

[
1,±e± iΘ , 0, 0

]T
e± ipeσ cosΘx, (2)

Ψh
±(x) =

[
0, 0, 1,∓e± iΘσ

A

]T
e±iphσ cosΘσ

Ax, (3)

in the insulating regions (−d < x < 0 for i = 1 or
L < x < L+ d for i = 2):

Ψh
il±(x) =

[
0, 0, 1,∓e± iΘσA

i0

]T
e± iphi cosΘ

σA
i0 x, (4)

Ψ e
il±(x) =

[
1,±e± iΘσ

i0 , 0, 0
]T

e± ipei cosΘ
σ
i0x, (5)

in the superconducting region (0 < x < L):

Ψ e
S±(0 < x < L) =

[
u, ue iΘ

σ
± , v, v e iΘ

σ
±

]T
× e iq

e cosΘσ
±x, (6)

Ψh
S±(0 < x < L) =

[
v, v e iΘ

σ
± , u, ue iΘ

σ
±

]T
× e iq

h cosΘσ
±x, (7)

where peσ = (E + EF + σh), phσ = (E − EF + σh),
pei = (E + EF − Vi), phi = (E − EF + Vi); (i = 1, 2),

qe = (EF+U0+
√
E2 −∆2), qh = (EF+U0−

√
E2 −∆2),

and u and v are the BCS coherence factors. The angles
Θσ

A,Θ
σ
i0,Θ

σA
i0 ,Θσ

± are related to the angle of incidence
Θ and can be determined from the assumed momentum
conservation in the y direction, i.e. where the system is
translationally invariant. From the conservation of mo-
mentum, we �nd critical angles of incidence αi

σ (i = 1, 2,
3, 4, 5). For greater angles the waves functions describ-
ing the re�ection processes become evanescent, and thus,
these processes do not contribute to any charge trans-
port. The critical angle is de�ned as min[αi

σ] and αi
σ are

de�ned as follows:

α1
σ = arcsin

(
|E + σh− EF|D−1

)
, (8)

αj
σ = arcsin

(
|E − |EF − Vj ||D−1

)
, j = 2, 3, (9)

α4
σ = arcsin

(
|EF + U0|D−1

)
, (10)

α5
σ = arcsin

(
|E + σRh− EF|D−1

)
, (11)

where D = |E + σh + EF| and σR = ±1 stands for the
spin value in the right graphene layer. The probabil-
ity amplitudes, for the AR, CAR and ET processes in
graphene-based junctions, are determined from the ap-
propriate boundary conditions, imposing only continuity
of the wave functions.
The appropriate transport coe�cients for a right mov-

ing spin up electron are determined by imposing the
boundary conditions that match the following wave func-
tions at all the interfaces:

Ψleft(x) = Ψ e
+(x) + bΨ e

−(x) + aARΨ
h
−(x),

ΨiI(x) = piΨ
e
iI+(x) + qiΨ

e
iI−(x) +miΨ

h
iI+(x)

+niΨ
h
iI−(x), (12)

(i = 1, 2)

ΨS(x) = pSΨ
e
S+(x) + qSΨ

e
S−(x) +mSΨ

h
S+(x)

+nSΨ
h
S−(x),

Ψright(x) = cETΨ
eR
+ (x) + aCARΨ

hR
+ (x),

where bNR, aAR, aCAR, and cET stand for the amplitudes

of normal, local Andreev, non-local Andreev re�ections,
and elastic cotunneling, respectively.
The remaining coe�cients in Eq. (12) are responsible

for transmission processes in insulating and supercon-
ducting layers. The boundary conditions lead to a system
of 16 linear equations whose solutions give all probability
amplitudes de�ned in Eq. (12). The probability current
conservation requires that the probabilities of outgoing
processes satisfy the normalization condition.

3. Conclusions

In summary, we have considered the charge transport
through the graphene based multiterminal junctions with
the gate voltages (V1, V2) applied to the insulator as well
to the superconductor (U) layers. In Fig. 1 we have pre-
sented how the probabilities of ET, CAR and AR depend
on the magnetic con�gurations of the ferromagnetic elec-
trodes. For parallel alignment (see Fig. 1a) ET dominates
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wheras for antiparallel one (see Fig. 1b) we have observed
the dominance of CAR, however for larger values of L
(L > ξ) AR is greater than CAR.

Fig. 1. Probabilities of the elastic cotunneling (cET),
crossed Andreev re�ection (aCAR), and local Andreev
re�ection (aAR) as a function of the width of the super-
conducting layer L relative to the superconducing coher-
ence length ξ, for the following parameters: h/∆ = 0.8,
θ = 0.8, d/ξ = 0.1, E/∆ = 0.50, V1/∆ = 0.1,
V2/∆ = 1.1, U0/∆ = 0.1; (a) and (b) stand for par-
allel and antiparallel con�gurations, respectively.

Fig. 2. Probabilities of the specular (EF/∆ = 0.02)
and retro (EF/∆ = 100) crossed Andreev re�ections
as a function of energy E, for the following parameters:
h/∆ = 0.3, θ = 0.2, d/ξ = 1.6, V1/∆ = 0.6, V2/∆ = 0.2,
U0/∆ = 0.1.

In Fig. 2 we have plotted the probabilities of the specu-
lar and retro non-local Andreev re�ections as function of
energy. The specular Andreev re�ections takes place in
the weakly doped graphene i.e. if EF ≪ ∆. In the heavily
doped graphene i.e. if EF ≫ ∆, the retro Andreev re-
�ection appears. For E/∆ ≤ 1 the retro re�ection domi-
nates if EF ≫ ∆, while the specular re�ection dominates

if EF ≪ ∆ [5]. In Fig. 2, we can see that for very small
values of energy the specular re�ection can dominate.
However, it is hardly a universal feature but merely a
consequence of the choice of the model parameters. The
interesting fact is that for the ferromagnetic graphene-
-based junctions, separated by two insulator layers, the
specular Andreev re�ection, unlike the retro Andreev re-
�ection, is very sensitive to the change of the polariza-
tions of the ferromagnetic electrodes. The retro Andreev
re�ection oscillates with the width of insulators layers d
and the gate voltages V1 and V2 applied to the insulators,
regardless of the strength of the magnetic �eld h.
It is worth mentioning that the wave functions are

propagating in the ferromagnetic regions for all values
of the quasiparticle energy, while in the superconducting
region only for the energies which are greater than the
superconducting gap ∆. For the energies lower than ∆,
the wave functions become evanescent along their propa-
gation direction, inside the superconducting region, and
they decay exponentially for L > ξ. We have observed
that analogously to non-graphene double junctions [11],
the probabilities of the coherent single particle charge
transport processes (AR, CAR, and ET) oscillate with
the energy (for E > ∆) and the thickness L of the su-
perconducting layer and vanish for E < ∆ if L ≫ ξ.
The oscillations, with a period of geometrical resonance,
are due to interference of incoming and outgoing charge
carriers. In the limit L ≫ ξ the sub-gap transmission
contains only the local Andreev process. For L ≈ ξ the
electron elastic cotunneling begins to play a role and a
further decrease in L activates also the non-local Andreev
re�ection.
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