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We investigate the frustrated two-dimensional S = 1/2 next nearest neighbor anisotropic Heisenberg
antiferromagnet on a square lattice as described by the J1a,b − J2 model. We use spin-wave theory and exact
diagonalization for �nite tiles including a new method for the �nite size scaling procedure. We present results
obtained from the extension of our numerical method to �nite magnetic �elds as well as from spin-wave theory.
The induced uniform and the staggered moment in the antiferromagnetically ordered phases in the presence of
a magnetic �eld are calculated. They deviate strongly from classical behaviour depending on frustration ratio
J2/J1a,b and the J1a,b exchange anisotropy. The magnetization becomes strongly nonlinear and is suppressed from
the classical value. This is due to enhanced quantum �uctuations already at moderate frustration.

PACS: 75.10.Jm, 75.30.Cr, 75.30.Ds

1. Introduction

We present recent results from our investigation of the
frustrated two-dimensional S = 1/2 next nearest neigh-
bor anisotropic Heisenberg antiferromagnet on a square
lattice as described by the J1a,b − J2 model [1, 2]. This
model has a number of realizations in layered V4+ com-
pounds [3�5]. Combining the results of several experi-
mental investigations, the determination of the location
of these compounds in the phase diagram was possi-
ble [6�8]. It was eventually found that all known com-
pounds are lying in the region of columnar antiferromag-
netic (CAF) order, characterized by an ordering vector
Q = (π, 0) or (0, π). Strictly speaking, the V4+ com-
pounds all have slight orthorhombic distortions, lead-
ing to a spatial anisotropy in the nearest-neighbor ex-
change constants J1a and J1b along the respective crys-
tallographic directions.
Recently, results from inelastic neutron scattering

(INS) on the low-energy excitations of the 122 Fe pnic-
tides have shown that these can also be described by
a local-moment model with nearest- and next-nearest
neighbor exchange integrals, despite the metallic nature
of these compounds [9�12]. Here, a spatial anisotropy of
the exchange parameters has been introduced, too.
INS results also show that in the Fe pnictides, well-

-de�ned spin excitations exist in the whole Brillouin
zone, which suggests a local-moment picture for the
magnetic excitations to be applicable. The experimen-
tally observed size of the ordered moment is strongly re-
duced compared to predictions from density-functional
theory. In this report, we summarize our results on the
anisotropic frustrated two-dimensional S = 1/2 Heisen-
berg model on the square (or better rectangular) lattice.
Within this model, it seems natural to investigate to what
extent frustration can serve as an origin for the observed
moment reduction.

2. Theory
The Hamiltonian we discuss has the form

H =
∑
⟨ij⟩

JijSiSj − gµBH
∑
i

Sz
i , (1)

where Jij = diag(J⊥
ij , J

⊥
ij , J

z
ij), and Jij = J1a or J1b if

i and j mark nearest-neighbor sites along the crystal-
lographic a and b directions, respectively, Jij = J2 if i
and j denote next-nearest neighbors, and the sum runs
over all nearest- and next-nearest neighbor bonds. The
magnetic �eld h = gµBH points along the z direction in
spin space. On each site i, we introduce a local coordi-
nate system, where the z axis is oriented parallel to the
local magnetic moment, and express the spin operator
products in Eq. (1) in these coordinates.
For the classical ground-state energy, we get

Ecl = NS2
[
J⊥(Q)−A(0) cos2 Θc

]
, (2)

where J⊥(Q) is the Fourier transform of the exchange
constants perpendicular to the magnetic �eld, Θc is the
canting angle of the spins with respect to the magnetic
�eld given by cosΘc = h/[2SA(0)], and

A(k) = Jz(k) +
1

2
[J⊥(k +Q) + J⊥(k −Q)]

−2J⊥(Q). (3)

Minimizing Ecl(Q) with respect to Q yields the ordering
vector Q.
Within the framework of linear spin-wave theory, we

expand the Hamiltonian around its classical limit up to
�rst order in 1/S. The result is

H = Ecl + Ezp + S
∑
k

E(h,k)α†
kαk, (4)

where Ecl is given by Eq. (2),

Ezp = NSJ⊥(Q) +
S

2

∑
k

E(h,k) (5)

is the zero-point energy contribution to the total ground
state energy, and SE(h,k) is the �eld-dependent excita-
tion energy of a magnon with momentum k, which is of
the form

E(h,k) =
{[

A(k)−B(k) cos2 Θc

]2
= −

[
B(k)

(
1− cos2 Θc

)]2}1/2

+ C(k) cosΘc,
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B(k) = Jz(k)−
1

2
[J⊥(k +Q) + J⊥(k −Q)],

C(k) = J⊥(k +Q)− J⊥(k −Q). (6)

The ordered moment M is the ground-state expectation
value of the z component of the spin S in local coordi-
nates and can be expressed as

M = S

[
1− 1

2S

(
1

N

∑
k

A(k)−B(k) cos2 Θc

E(h,k)
− 1

)]
(7)

in units of gµB. Due to quantum �uctuations M < S
is smaller than in the classical case, except for the ferro-
magnet, which is an eigenstate of the Hamiltonian.
In a similar way we can express the magnetization m

as the z component of the spin S in the global coordinate
system, which is equivalent to a projection of the ordered
moment onto the direction of the magnetic �eld. We get

m = S cosΘc

[
1+

1

2S

1

N

∑
k

B(k)(A(k)−B(k))

A(0)E(h,k)

]
, (8)

in units of gµB, again up to �rst order in 1/S.
We note that the results presented in this section are

in no way speci�c to the J1a,b − J2 model, but apply
to arbitrary spin Hamiltonians on the Bravais lattices,
provided the presence of the applied magnetic �eld does
not destroy the U(1) spin symmetry assumed here.
Within the framework of numerical exact diagonaliza-

tion, the ordered moment, which is strictly speaking a
property of the in�nite lattice only, can be obtained in-
directly from the static structure factor

SN (Q) =
1

N

N∑
i,j=1

⟨SiSj⟩e iQ(Ri−Rj), (9)

M2(Q) = lim
N→∞

SN (Q), (10)

where we set N = N(N+1/S), and independently of the
long-distance correlation function

lim
|Ri−Rj |→∞

|⟨SiSj⟩| = |⟨Si⟩⟨Sj⟩| = M2(Q). (11)

We parameterize the exchange constants according to

J1a =
√
2Jc cosϕ cos θ, J1b =

√
2Jc cosϕ sin θ,

J2 = Jc sinϕ, Jc =

√
1

2
(J2

1a + J2
1b) + J2

2 , (12)

introducing an energy scale Jc, a frustration angle ϕ and
an anisotropy angle θ (not to be confused with the cant-
ing angle Θc).

3. Results and discussion

Figure 1 displays the ground-state energy as a func-
tion of the frustration angle ϕ for the isotropic J1a = J1b
case with θ = π/4. The dotted line displays the classical
ground-state energy obtained from Eq. (2), the solid line
shows the result from linear spin-wave theory, Eq. (4).

Dots denote the values obtained from extrapolating our
exact-diagonalization data to the thermodynamic limit.
The agreement between linear spin-wave theory and ex-
act diagonalization is remarkably well, apart from the
regions around the classical borders of the CAF phase.

Fig. 1. The ground-state energy as function of the
frustration angle ϕ for the isotropic model with �xed
θ = π/4. The classical energy is shown as dashed line,
and the spin-wave results including zero-point �uctua-
tions are presented as solid line. Dots indicate the values
for the ground-state energy obtained from extrapolat-
ing our exact-diagonalization data. The inset shows a
sketch of the classical phase diagram as a function of ϕ
and θ.

Fig. 2. The extrapolated ordered moment as function
of the frustration angle, for (top) the isotropic θ = π/4
case and (bottom) the maximally anisotropic case with
θ = 0. The gray-shaded areas in the top plot represent
the range of frustration angles ϕ where the relative error
of M2(Q) is above 0.1.
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Figure 2 shows the dependence of the ordered mo-
ment on the frustration angle ϕ, again for the isotropic
model with θ = π/4 in the top part, and for the maxi-
mally anisotropic model with θ = 0 at the bottom. The
solid lines denote the results from linear spin-wave the-
ory, Eq. (7), the dots represent the extrapolated values
derived from the structure factor according to Eq. (9).
Compared to the classical, constant valueMcl = S = 1/2,
the ordered moment is strongly reduced due to enhanced
quantum �uctuations already at moderate frustration.
In fact, M vanishes around the classical borders of the
columnar phase, indicating the emergence of two non-
-magnetic phases not discussed here. However, introduc-
ing a spatial anisotropy (θ ̸= π/4) lifts the degeneracy
between the two columnar phases CAFa and CAFb and
stabilizes the ordered moment.

Fig. 3. Uniform magnetic momentm per site as a func-
tion of the applied magnetic �eld h normalized to the
saturation �eld hs = 2SA(0) at three di�erent frustra-
tion angles in the CAF phases, ϕ/π = 0.16 (near Néel
phase), 0.25 (CAFa), and 0.65 (CAFb near FM). Be-
tween each pair of adjacent curves an o�set ∆m = 0.1
is inserted. The solid lines denote the �eld dependence
in the isotropic case, θ = π/4, the dashed lines denote
the maximally anisotropic case, θ = 0.

A similar e�ect can be observed in the �eld dependence
of the uniform magnetization m, Eq. (8) shown in Fig. 3
for three di�erent values of the frustration parameter ϕ.
The solid lines in the plot denote m(h) for the isotropic
model [13]. In particular, near the crossover to the non-
magnetic regions, the curves are strongly nonlinear, sup-
pressed from the classical linear behaviormcl = Sh/hs for
h ≤ hs = 2SA(0). This e�ect, which is due to zero-point
�uctuations in the ground state, too, is also reduced when

introducing a spatial anisotropy, see the dotted lines in
the �gure.

4. Conclusions

To summarize, we have performed an extensive analy-
sis of the J1a,b−J2 model both with linear spin-wave the-
ory and numerical exact diagonalization. The agreement
between the two approaches was found to be generally
good, and both methods predict the strong suppression
and eventual breakdown of the ordered moment in the
transition regions at the borders of the columnar phases
as a function of frustration. A spatial anisotropy has a
stabilizing e�ect on the ordered moment in the columnar
phases.
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