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1. Introduction

Charge order in condensed matter is subject of current
research in connection with high-temperature supercon-
ductors [1], manganites [2], organic conductors [3] and
other materials [4]. Sophisticated methods can be used
in the investigations yet the starting point of research is
very often mean-�eld approximation (MFA). It consists
in treating the operators as composed of averages plus the
�uctuations, and then omitting the products of �uctua-
tions (considered to be small). The averaged operators
may be chosen in many ways from exact, multi-operator
products of second quantization creation and annihila-
tion operators. We may keep the orderings we want to
examine and omit the non-interesting ones. In particular,
in the Hubbard model and its extensions, which are most
often used in the research of previously mentioned ma-
terials, so called Hartree (chemical potential shift) and
Fock (average kinetic energy) terms arise [5]. As they
appear in all phases (including normal one), even if no
special ordering is considered, they can be regarded as
basic (to the extent, that even the term MFA is often
used interchangeably with the term �Hartree�Fock ap-
proximation� � HFA). Nevertheless, those very terms
are often omitted from the calculations, especially the
Fock term [5�7]. Despite there are arguments justifying
such a procedure [5], inclusion of those terms is a �rst
step towards more accurate solutions and going beyond
MFA. The present paper shows the results of (broken
symmetry) HFA, including both kinds of terms, applied
to charge order (CDW) phase of t�W model (but with
some results applicable also to t�U�W model) compared
to the well-known results obtained without Fock term [5].

2. Formulae

We start with the extended Hubbard Hamiltonian

H = −t
∑

⟨i,j⟩,σ

c†iσcjσ − µ
∑
iσ

niσ

+U
∑
i

ni↑ni↓ +
W

2

∑
⟨i,j⟩

ninj

with summation ⟨i, j⟩ over nearest neighbors. MFA is ap-
plied to this Hamiltonian, obtaining, among other things,
the Hartree terms: niσnjσ′ → ⟨niσ⟩njσ′ + niσ⟨njσ′⟩ −
⟨niσ⟩⟨njσ′⟩, where ⟨.⟩ denote thermal averages with re-
spect to the linearized Hamiltonian (which will be later

calculated self-consistently). Another ordering of op-
erators (retaining σ = σ′ averages), in Gorkov-type
linearization procedure, yields Fock terms (p-terms):

niσnjσ′ → c†iσcjσc
†
jσciσ → ⟨c†iσcjσ⟩c

†
jσciσ + H.c. − ⟨.⟩⟨.⟩.

CDW order parameter is given as the di�erence of elec-
tron densities in the two sublattices A and B:

nQ = ⟨nA⟩ − ⟨nB⟩ =
1

N

∑
i,σ

⟨niσ⟩e iQRi , (1)

where e iQRi = −1 for any translation R transforming
one sublattice into the other and N is number of lattice
sites. In the reciprocal space

H =
∑
kσ

ϵkc
†
kσckσ − 1

2

∑
kσ

(
∆c†kσck+Qσ +H.c.

)
+C, (2)

ϵk = ϵ̃k − µ, (3)

ϵ̃k = ϵk − 1

N
W

∑
q

γk−q⟨c†qσcqσ⟩, (4)

∆ = (−U + 2zW )nQ/2, (5)

µ = µ− (U + 2zW )n/2, (6)

C = −N(U + 2zW )
n2

4
+

W

2N

∑
kqσ

γk−q⟨nkσ⟩⟨nqσ⟩

+
−U + 2zW

2N

∑
kqσ

⟨c†kσck+Qσ⟩⟨c†qσcq−Qσ⟩, (7)

and ϵk = −tγk, γk =
∑

δ e
ikδ, n = 1

N

∑
kσ⟨nkσ⟩, z is

number of nearest neighbors and δ are vectors connect-
ing a given site to its nearest neighbors. After the sim-
pli�cation γk−q = γkγq/z we can write the Fock term in
the reciprocal space

p =
1

N

∑
k

γk⟨nkσ⟩, (8)

which will bring single-particle energy into the form:
ϵk = ϵk(1 + pW ) − µ, where W is in half-bandwidth
units: D = zt. After diagonalization one can obtain the
free energy

F

N
= (n− 1)µ+ (U + 2zW )

n2

4
+

W

4
p2 − ∆2

U − 2zW

− 1

βN

∑
kα

ln

(
2 cosh

(
βEα

k

2

))
, (9)

(and grand canonical potential Ω/N = F/N−µn), where

(1085)
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β = 1/kBT , kB the Boltzmann constant, and with quasi-
particle energies

Eα
k = −µ+ α

√
ϵ2k(1 + pW )2 +∆2, (10)

where α = ± and U , W , µ, ∆, F , Ω, kBT (in short T )
are in D units. After di�erentiation in the saddle point
one can obtain the equations for the CDW phase

n− 1 = −
∫ 0

−1

dϵρ(ϵ)
(
th− + th+

)
, (11)

2

U − 2zW
= −

∫ 0

−1

dϵρ(ϵ)
(
th− − th+

)
/κ(ϵ), (12)

p = −2(1 +Wp)

∫ 0

−1

dϵρ(ϵ)ϵ2
(
th− − th+

)
/κ(ϵ), (13)

where we changed from the lattice sums to the energetic
integrals with the density of states (DOS) ρ(ϵ) (due to
the presence of the vector Q, the lattice sums are over
the half of the Brillouin zone, which translates into the
integrations from ϵ/D = −1 to 0, for symmetric DOS'es)
and we de�ned: thα = tanh(βEα/2), Eα = −µ+ ακ(ϵ),

κ(ϵ) =
√
ϵ̃2 +∆2, ϵ̃ = ϵ(1 + pW ). Normal state (NO)

equations can be obtained from these by putting ∆ = 0.
Remember that properly simpli�ed Eα in this way yields
ϵ̃ in normal phase (not |ϵ̃|). Let us note that there are
analytic solutions for rectangular DOS [5, 6] at T = 0
(see Appendix).

3. Results

The following results were obtained for the rectangular
DOS and z = 4; all variables are in D units.
As the form of ϵ̃ shows, the Fock term is connected

with theW parameter, so to better evaluate the in�uence
of this term we will perform the calculations mostly for
U = 0 (and W = 0.25).

Fig. 1. CDW order parameter ∆ vs. electron density n
of pure CDW phase, for U = 0, W/D = 0.25. Full lines
� calculations without the Fock term, dashed lines �
including Fock term, thick lines � ground state, thin
lines � T/D = 0.1. In the inset the Fock term at
various temperatures for the same values of U and W .

In Fig. 1 CDW order parameter is plotted versus
electron density. We notice immediately that CDW

phase exists only within restricted range of charge densi-
ties around half-�lling, between critical densities nc and
2−nc. Increasing the temperature increases the range of
existence of CDW phase (but further increase of temper-
ature decreases CDW range), while the inclusion of the
Fock term decreases both the range of existence of CDW
and also its amplitude. Let us note that the above plots
concern ∆ in pure CDW phase which is not stabilized in
lower temperatures. Below the temperature of tricriti-
cal point CDW exists only in phase separation (PS) with
normal state (as will be shown later) and we can consider
there �pure� CDW only within CDW fractions of phase
separation or at n = 1.
In the inset there are plots of the Fock term in three

temperatures. They are to be compared with the normal
state Fock term, which in the ground state for rectangular
density of states is equal to pno = n(2−n). With increas-
ing temperature pcdw(n) dependence becomes more and
more �at. One can also see the temperature dependence
of nc again: for larger temperatures the range of CDW
existence shrinks.

Fig. 2. Chemical potential µ and renormalized chemi-
cal potential µ (in the inset) vs. electron density. Val-
ues of the parameters and line designations the same as
in Fig. 1.
Another characteristics of the CDW phase, the chem-

ical potential µ and renormalized chemical potential µ,
are shown in Fig. 2. The plots are a bit peculiar, ex-
hibiting a jump at n = 1 in the ground state and some-
times negative slope vs. n. Negative value of ∂µ/∂n indi-
cates negative compressibility resulting in instability and
a phase separation (PS). The actual value of µ at half-
-�lling is equal to zero, due to electron�hole symmetry
(though in the ground state Eqs. (11)�(13) are ful�lled
for any |µ| < |∆|). The value of the ground state jump
of µ (and also µ) between the values at n = 1−ε and µ at
n = 1+ ε, ε → 0, is equal to 2∆, re�ecting the �sti�ness�
of the system, in which there are no �free� lattice sites
to add a charge without increasing Coulomb energy (in
the ground state). Only at T > 0 thermal �uctuations
disrupt the perfect CDW ordering, allowing some lattice
sites to accept some additional charges. Instead of sharp
jump at n = 1 we have then a positive slope of µ(n), be-
tween some densities nx and 2− nx. Beyond that range
the compressibility is still negative and phase separation
still exists. In the ground state it is a phase separation
between NO state at some density and CDW at n = 1,
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for higher temperatures between NO and CDW with n
from the range between nx and 1 (or between 2 − nx

and 1). Let us note that the behavior of µ(n) may be
di�erent from µ(n): the latter may show negative slope
while for the same U and W the former may not. The
phase separation is decided by the behavior of the in-
dependent variable of the grand canonical potential Ω ,
i.e. by µ.

Fig. 3. CDW gap vs. chemical potential and µ (inset).
�X� 'es (in the inset � vertical lines) show where 1st
order transition happens (for n < 1). Line designations
the same as in Fig. 1.

Figure 3 shows the dependence of CDW gap vs. chem-
ical potential. The negative slope of µ (or µ) is con-
nected with characteristic �reentrant� behavior of ∆(µ)
(or ∆(µ)), which disappears when µ (or µ) becomes an
increasing function of n. Let us note that points where
∆ = 0 correspond to critical densities nc and 2−nc, while
extremal values of µ (or µ) at which ∆ still exists corre-
spond to charge densities nx and 2−nx at which µ(n) (or
µ(n)) has extrema. Between nx (or 2−nx) and n = 1, ∆
assumes the values from the range between ∆(nx) and its
maximal value ∆(n = 1). Values of ∆ < ∆(nx) belong to
metastable branch of the solution with ∂µ/∂n < 0. Re-
sults including the Fock term yield the same conclusions
as drawn in connection with Fig. 1.
The points where ∆ → 0 are points of second or-

der transition (II o.t.). I o.t. was found by looking for
the intersection of grand canonical potentials Ωcdw(µ)
with Ωno(µ), both plotted vs. bare chemical potential µ,
Fig. 4. The µ of intersection corresponds to certain value
of electron density in NO phase and di�erent value of
electron density in CDW phase (as there are two di�er-
ent equations connecting µ and n in the two considered
phases). Those n's can also be found based on plots of
F (n) and Maxwell construction [6], as shown in the inset
in Fig. 4.
The positions of I and II o.t. for T = 0 are shown

in Fig. 5. II o.t. boundary, i.e., lines of critical den-
sity nc, are shown in the inset for temperatures T = 0
and T = 0.1. Increasing T shrinks the area of possible
CDW existence around half-�lling to an exponentially
small area for smaller W , yet for larger W 's the area of
CDW expands (compared to T = 0). Inclusion of the

Fig. 4. Plot of Ωcdw (full line) and Ωno (dashed line)
vs. µ at T = 0.1. In the inset part of the corresponding
plots of free energies Fcdw and Fno vs. n with a dashed,
straight line showing Maxwell construction; nc shows
critical density, nps density in the NO fraction of PS,
nx described in the text.

Fig. 5. Boundaries of I and II o.t. in the ground state.
Thick, full, lowermost line: I o.t. boundary with no
Hartree terms in (6) and (7) and no Fock (�p-terms�).
Full line � I o.t., no p-term, dashed line � I o.t. with
p-term, dotted lines closest to the full and dashed lines
� curves of II o.t. without and with p-term. At n = 1
there is always CDW shown by vertical line. Inset:
boundaries of II o.t. for T = 0 (dotted) and T = 0.1
(full): external � no p-term, internal � with p-term.

Fock term into calculations always decreases the range of
existence of CDW. Let us note that after mapping of W
into V = U/2 − zW (i.e., simple renumeration of the
vertical axis) the diagram is applicable not only to t�W
model but also to the t�U�W model (as far as CDW
phase is concerned): various values of U and W , yielding
the same V , yield the same II o.t. boundary in calcula-
tions without the Fock term (but not I o.t.). Inclusion
of the Fock term breaks that �universality�: for given V
the II o.t. boundaries calculated for U ̸= 0 will lie be-
tween those calculated for U = 0 (maximal in�uence of
the Fock term) and those calculated without p-term.

As was shown in Ref. [8] NO�CDW transition is of I
order, unlike suggestions in earlier literature [9]. Present
calculations con�rm that fact, even with inclusion of the
Fock term. Let us note that omitting the Hartree terms:
V n/2 and −NV n2/4, V = U + 2zW , from Eqs. (6)
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and (7), respectively, moves I o.t. boundary towards lower
W values (and is responsible for appearing of critical
value ofWcr, above which PS (= CDW+NO) exists in the
whole range of electron densities [8, 10], except n = 1).
Inclusion of the Hartree terms makes I o.t. boundary very
close to II o.t. boundary (and removes Wcr [7]). Let us
note also, that n in PS areas is weighted average of frac-
tions with nno and ncdw.

Fig. 6. Phase diagram for U = 0, W = 0.25. Thick
lines � results without Fock term, thin lines � includ-
ing Fock term. Bigger inset within the �dome�: depen-
dence of Wmax (see text) on T (full line � no Fock
term, dashed line � with Fock term, straight line going
through the point (0, 0) � line W = T/2), smaller inset
within the �dome�: enlargement of the �rst inset close
to the axes origin. Inset outside the dome � the di�er-
ence between temperatures of disappearance of CDW
at n = 1 calculated without and with the Fock term
vs. Wmax.

The temperature dependence of phase diagram is
shown in Fig. 6. For a given U and W , within critical
densities, for smaller temperatures there is a phase sep-
aration between NO state, with electron densities given
by the external dashed lines, and CDW fractions with n
given by the internal dashed lines. Dotted lines within
PS areas show where the II o.t. boundary would lie. At
the point where the two dashed lines meet (for T > 0)
there are tricritical points. For larger temperatures there
can be only II o.t. The maximal temperature of CDW�
NO II o.t. (Tmax) appears at half-�lling (atWmax). Wmax

dependence on T (for U = 0) is shown in the inset within
the �dome�. Let us note that for larger temperatures
Wmax → T/2. Inclusion of p-term decreases Tmax. The
di�erence between Tmax's calculated without and with
the Fock term is shown in the inset outside the dome.
Let us note the reentrant character of the phase dia-
gram, oblivious to the presence of the Hartree or Fock
terms (yet it is absent in, e.g., molecular crystal model
in d = ∞ [10]).

4. Discussion

Several comments are due. The in�uence of the Fock
term on the extended Hubbard model with U ̸= 0 will be
weaker than in described t�W model.
The in�uence of p-term diminishes with increasing z.
The p-term connected with W > 0 always destabilizes

CDW, as it is connected with the increase of the absolute

value of kinetic energy. After adding U < 0 we could
also consider the in�uence of W < 0 on CDW, which
could be favorable (narrowing the e�ective bandwidth),
if only we would not allow other types of ordering, like
superconductivity, to set in.
The similar remark concerns large PS areas in the

phase diagram or �V -universality� of the inset in Fig. 5:
the PS areas are likely to be diminished or even removed
by other pairings (or incommensurate CDW), if they are
only allowed [6, 8] and changing U and W parameters,
keeping constant V , may also stabilize other pairings (e.g.
AF for U > zW [1]), a possibility not considered here.
The present paper is at di�erence with calculations

omitting the Hartree term from Eq. (7) and treating µ
as an e�ective potential [8]. The example shown in the
current paper (∂µ/∂n > 0, while ∂µ/∂n < 0) suggests
that e�ective potential calculations yield broader range of
existence of phase separation compared to present work.
The results concerning CDW phase in HFA are closely

related to results concerning antiferromagnetism (AF)
in HFA (e.g., [8]), as CDW order parameter (o.p.) is
transformed into AF o.p. by electron�hole transforma-
tion.
As no magnetic orderings are considered, current re-

sults should also agree with the results of t�W spinless
model [7].

Appendix

For completeness we remind the well known results for
CDW and NO phases in the ground state with rectan-
gular DOS [5, 6] and p-term added: NO: µ = (n − 1),
p = n(2−n). CDW: (i) |µ| > |∆|, n ̸= 1: µ(n) = sgn(1−
n)[1− |n− 1| cosh(1/V )]/ sinh(1/V ), ∆2 = µ2− (n− 1)2,
(ii) |µ| < |∆|, n = 1: ∆ = 1/ sinh(1/V ); V = U/2− zW ,
X = X/(1 + pW ), for X = µ, ∆, V .
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