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Periodic Anderson Model with d�f Interaction
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We investigate an extended version of the periodic Anderson model where an interaction is switched on

between the doubly occupied d- and f -sites. We perform variational calculations using the Gutzwiller trial
wave function. We calculate the f -level occupancy as a function of the f -level energy with di�erent interaction
strengths. It is shown that the region of valence transition is sharpened due to the new interaction.
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1. Introduction

The heavy-fermion phenomenon, which is observable
in many rare-earth materials, is still an active �eld of re-
searched area. The simplest model, which can account
for these phenomena is the periodic Anderson model. For
a review on this topic see [1�3]. The model in its sim-
plest form describes a hybridization (v) between a wide
conduction band and correlated f -electrons localized at
lattice sites. Despite its simple form there is no gen-
eral solution to this problem, exact solutions have been
obtained only in some special cases [4]. Nonperturba-
tive approaches like variational methods [5�9] are appli-
cable even if the Coulomb interaction (Uf ) between the
f -electrons is large, though we have to use some uncon-
trolled approximation when calculating the expectation
values. In a recent paper [10] it was shown that the
repulsion between the d- and f -electrons plays an im-
portant role in valence transition. It has been argued
that the sudden change of valence of Ce can account
for the presence of a sharp peak in the transition tem-
perature of some superconducting Ce based compounds.
The e�ects of this new interaction have been examined
with dynamical mean �eld theory [11�13], slave-boson
method [10, 14], variational Monte Carlo technique [15]
and projector-based renormalization approach [16]. It
has been found in these papers that intermediate valent
region narrows in the presence of d�f coupling.
In this paper we examine the ground state properties of

this extended model using the Gutzwiller method. How-
ever, the conventional d�f interaction

Udf

∑
j,σ,σ′

n̂f
jσn̂

d
jσ′ (1)

is too di�cult to handle within the framework of this
method, so we consider a modi�ed d�f interaction

Ũdf

∑
j

n̂f
j↑n̂

f
j↓n̂

d
j↑n̂

d
j↓, (2)
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where electrons repel each other only when site j is fully
occupied. The reason for this modi�cation is that it can
be treated easier, since much less electron con�gurations
need to be taken into account.

2. Variational calculation

We summarize the main steps of the performed varia-
tional calculation following Ref. [17]. For simplicity in the
present work we restrict ourselves to a nonmagnetic half-
-�lled band, although the variational procedure can be
carried out without these assumptions. Assuming that
there are N↑ = N↓ up- and down-spin electrons in an
arbitrary dimensional lattice with L lattice sites, we con-
sider the following Hamiltonian:

H =
∑
k,σ

εd(k)d̂
†
k,σd̂k,σ − v

∑
j,σ

(
f̂†
j,σd̂j,σ + d̂†j,σ f̂j,σ

)
+ ϵf

∑
j,σ

n̂f
j,σ + Uf

∑
j

n̂f
j↑n̂

f
j↓

+ Ũdf

∑
j

n̂f
j↑n̂

f
j↓n̂

d
j↑n̂

d
j↓, (3)

where n̂f
j,σ = f̂†

j,σ f̂j,σ, and n̂d
j,σ = d̂†j,σd̂j,σ. The symbol

k denotes the wave vector, and j is the site index. The
width of the d-band is W . The trial wave function of the
Gutzwiller-type is expressed as

|Ψ⟩ = P̂ df
G P̂ f

G

∏
k

∏
σ

[
ukf̂

†
k,σ + vkd̂

†
k,σ

]
|0⟩, (4)

where the mixing amplitudes uk/vk are also variational

parameters, and P̂ df
G and P̂ f

G are the Gutzwiller projec-
tors, which are written down as follows:

P̂ df
G =

∏
j

[
1− (1− ηdf )n̂

f
j↑n̂

f
j↓n̂

d
j↑n̂

d
j↓

]
, (5)

P̂ f
G =

∏
j

[
1− (1− ηf )n̂

f
j↑n̂

f
j↓

]
, (6)

where the variational parameters ηdf and ηf are con-

trolled by Ũdf and Uf , respectively. We use the so-
-called Gutzwiller approximation to evaluate the expec-
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tation values of the Hamiltonian. Optimizing the ground
state energy density with respect to the mixing ampli-
tudes, we obtain the following expression for that:

E =
1

L

∑
k∈FS

[
qdϵd(k) + ϵ̃f −

√
(qdϵd(k)− ϵ̃f )

2
+ 4ṽ2

]
+(ϵf − ϵ̃f )nf + Ũdfνdf + Ufνf , (7)

where nf is the average number of f -electrons per site,
i.e.

nf =
1

L

⟨∑
σ

n̂f
j,σ

⟩
, (8)

νf denotes the density of the doubly occupied f -sites
and νdf is the density of such sites when both the f -
and d-sites are doubly occupied, ϵ̃f is the quasiparti-
cle energy level of the f -electron (the e�ective f -level,
its precise form is not presented here due to its lengthy
form), ṽ denotes the renormalized hybridized amplitude,
ṽ =

√
qdqfv, and the summation is carried out over all

wave numbers, k, of electrons in the Fermi sea (FS). The
qd and qf are the kinetic energy renormalization factors
for the d-electrons and f -electrons, respectively, and are
functions of n (the total numbers of electrons per site),
nf , νd (the density of the doubly occupied d-sites), νf ,
and νdf . The determination of these quantities is the
main task of the Gutzwiller method. Their forms in the
present model are much more complicated than in those

models which do not contain the interaction Ũdf . The
results are written in the following complete square (the
Gutzwiller-like) form:

qf =
1

nf

2

(
1− nf

2

)(√(nf

2
− νf

)
(1− nf + νf )

+

√(nf

2 − νf
)
(νf − νdf )(1− νf − νd)

1− νf

+

√
νdνdf

(nf

2 − νf
)

1− νf

2

, (9)

qd =
1

n−nf

2

(
1− n−nf

2

)
×

(√(
n− nf

2
− νdf − νd

)
(1− n+ nf + νd + νdf )

+

√√√√νd

(
n−nf

2 − νd − νdf

)
(1− νd − νf )

1− νd − νdf

+

√√√√νdf (νf − νdf )
(

n−nf

2 − νd − νdf

)
1− νd − νdf


2

, (10)

where n is the total number of electrons per site, i.e.

n = 1
L

⟨∑
j,σ n̂

f
j,σ +

∑
j,σ n̂

d
j,σ

⟩
. It is worth mentioning

that without Ũdf , qf depends only on nf and νf [17].
Since there is no direct hopping between the di�erent

f -sites, qf appears only in the renormalized hybridized
amplitude ṽ =

√
qdqfv. It should be emphasized that

qd is not unity, i.e. the width of the d-band is nar-
rowed, though there is no Coulomb repulsion between
the d-electrons. It is also remarkable that the renormal-
ization amplitude of the hybridization still can be written
as the square root of the product of qf and qd in spite of
this new interaction. These are the main results of this
paper.

3. Results

For further calculations we assume that the density of
states of the d-band is constant, ρ(ϵ) = 1/W , when ϵ is
in the interval [−W/2,W/2]. Using this assumption the

Fig. 1. The f -level occupancy as a function of the en-
ergy ϵf of the f -level at half-�lling, v/W = 0.1875 and
Uf/W = 5. The continuous and dotted curves belong

to Ũdf/W = 0 and 10, respectively. The inset shows the
enlarged view of the framed region.

summation over the wave vectors in Eq. (7) can still be
performed analytically. The ground state energy density
thus obtained should be optimized with respect to νd,
νf , νdf and nf . After this procedure we arrive at a non-
linear system of equations for these unknown quantities.
We solve the obtained equations numerically. Typical
results are shown in Fig. 1. One can see that switching

on Ũdf also results in the narrowing of the intermediate
valent regime of 2 > nf > 1 as the conventional d�f in-
teraction (see Eq. (1)) [10, 16], while no narrowing occurs
in the region of 1 > nf > 0, since the d�f interaction we
used is e�ective only when there are many doubly oc-
cupied f - and d-sites. The conventional d�f interaction
signi�cantly narrows the intermediate valent regime of
1 > nf > 0, too.
It is interesting to investigate the qf renormalization

factor, since it is related to the e�ective mass (m∗ ∼ q−1
f ).

The results are shown in Fig. 2. The same e�ect can
be seen here too, furthermore the heavy-fermion regime
extends to smaller f -level energies.
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Fig. 2. The f -level renormalization factor as a function
of the energy ϵf of the f -level at half-�lling, v/W =
0.1875 and Uf/W = 5. The continuous and dotted

curves belong to Ũdf/W = 0 and 10, respectively.

Fig. 3. The d-band renormalization factor as a func-
tion of the energy ϵf of the f -level at half-�lling, v/W =
0.1875 and Uf/W = 5. The continuous and dotted

curves belong to Ũdf/W = 0 and 10, respectively.

In Fig. 3 the renormalization factor for the d-band is
plotted. As it was outlined in Eq. (10) the d-electrons

become correlated in the presence of Ũdf , despite the fact
that there is no direct d�d Coulomb interaction present
in the model.

4. Conclusions

We have investigated an extended version of the usual
periodic Anderson model, where an additional repulsive
interaction among the d and f electrons was taken into
account. We have shown analytically that the conduc-
tion band is narrowed owing to the new interaction. We

have demonstrated that a �nite Ũdf expands the regime
of heavy-fermion character to a lower value of ϵf and nar-
rows the intermediate valent regime at the same time. It
is expected that the full d�f interaction (Eq. (1)) has an
even sharper e�ect. The calculation is in progress.
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