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On the BCS-BEC Crossover in the 2D
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We analyze the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly
bound local pairs in the 2D asymmetric attractive Hubbard model, in the presence of the Zeeman magnetic
�eld (h). The broken symmetry Hartree approximation is used. We also apply the Kosterlitz�Thouless scenario to
determine the phase coherence temperatures. We obtain that for the spin dependent hopping integrals (t↑ ̸= t↓)
the homogeneous polarized super�uid (SCM ) phase in the ground state for the strong attraction and lower �lling
can be stabilized. We �nd a topological quantum phase transition (the Lifshitz type) from the unpolarized
super�uid phase (SC0) to SCM and tricritical point in the (h−µ) and spin polarization (P ) vs. attraction (U < 0)
ground state phase diagrams. The �nite temperatures phase diagrams for t↑ ̸= t↓ are constructed.

PACS: 71.10.Fd, 74.20.Rp, 71.27.+a, 71.10.Hf

1. Introduction

Unconventional superconductivity in strongly corre-
lated electron systems and spin-polarized super�uidity
(in the context of cold atomic Fermi gases) are currently
investigated and widely discussed in the leading world
literature.
Recent works of experimental groups from MIT [1, 2]

and also from Rice University [3] began investigations
of quantum Fermi gases (6Li) with unequal numbers of
fermions with down (↓) and up (↑) spins (N↓ ̸= N↑
� systems with population imbalance). The possibil-
ity to control the population imbalance and the coupling
has motivated the attempts to understand the BCS-BEC
crossover phase diagrams at zero and �nite temperatures
for imbalanced systems.
The presence of a magnetic �eld, population imbalance

or mass imbalance introduces a mismatch between the
Fermi surfaces (FS). This makes the realization of many
interesting phases possible, e.g.: the spatially homoge-
neous spin-polarized superconductivity (breached pair
(BP)) which has a gapless spectrum for the majority
spin species [4]. The coexistence of the super�uid and
the normal component in the isotropic state is character-
istic for the BP phase. This kind of state was originally
considered by Sarma [5].
Some theoretical studies of the Fermi condensates in

systems with spin and mass imbalances have shown that
the BP state can have excess fermions with two FS's
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(BP-2 or interior gap state) [6�9]. According to some
investigations, the interior gap state [6] is unstable even
for large mass ratio [10, 11]. Therefore, the problem of
stability of the BP-2 state is open. At strong attraction,
the SCM phase occurs in three-dimensional imbalanced
Fermi gases [4, 10] as well as in the spin-polarized at-
tractive Hubbard model in a dilute limit (for h ̸= 0,
r = 1 [k12] and r ̸= 1 [13]). This homogeneous mag-
netized super�uid state consisting of a coherent mixture
of LP's (hard-core bosons) and excess spin-up fermions
(the Bose�Fermi mixture) can only have one Fermi sur-
face (BP-1).

In this paper we focus on s-wave superconducting (SC)
phases on a square lattice, described by the attractive
Hubbard model (AHM) (U < 0) in a magnetic �eld with
spin dependent hopping [14]:

H =
∑
ijσ

(
tσij − µδij

)
c†iσcjσ + U

∑
i

ni↑ni↓

−h
∑
i

(ni↑ − ni↓), (1)

where σ =↑, ↓, ni↑ = c†i↑ci↑, ni↓ = c†i↓ci↓, tσij � spin
dependent hopping integrals, U � on-site interaction, µ
� chemical potential. The Zeeman term can be created
by an external magnetic �eld (in gµB/2 units) or by a
spin population imbalance in the context of cold atomic
Fermi gases.

Applying the broken symmetry Hartree approxima-
tion, we obtain the equations for the gap parameter
∆ = − U

N

∑
i⟨ci↓ci↑⟩, particle number n = n↑ + n↓ (de-

termining µ), where nσ = (1/N)
∑

i⟨c
†
iσciσ⟩ and magne-

(1066)



On the BCS-BEC Crossover . . . 1067

tization M [15, 16]. The equations take into account the
spin polarization (P = (n↑ − n↓)/n) in the presence of
a magnetic �eld and spin-dependent hopping (t↑ ̸= t↓,
t↑+t↓

2 = t, t↑/t↓ ≡ r).

We also calculate the super�uid sti�ness ρs(T ) which
for t↑ ̸= t↓ takes the form

ρs(T ) =
1

4N

∑
k

{
∂2ϵ+k
∂k2x

− 1

2

[
∂2ϵ−k
∂k2x

+
ϵ+k
ωk

(
∂2ϵ+k
∂k2x

)

+

(
∂ϵ−k
∂kx

)2 |∆|2

ω3
k

]
tanh

(
βEk↑

2

)

+
1

2

[
∂2ϵ−k
∂k2x

−
ϵ+k
ωk

(
∂2ϵ+k
∂k2x

)
−
(
∂ϵ−k
∂kx

)2 |∆|2

ω3
k

]

× tanh

(
βEk↓

2

)
+

[
∂ϵ+k
∂kx

+
ϵ+k
ωk

(
∂ϵ−k
∂kx

)]2
∂f(Ek↑)

∂Ek↑

+

[
∂ϵ+k
∂kx

−
ϵ+k
ωk

(
∂ϵ−k
∂kx

)]2
∂f(Ek↓)

∂Ek↓

}
, (2)

where ϵ+k =
ξk↑+ξk↓

2 , ϵ−k =
ξk↑−ξk↓

2 − h̄, ξkσ = ϵkσ − µ̄,

ϵkσ = −2tσΘk, Θk =
∑d

l=1 cos(klal) (d = 2 for two-
-dimensional lattice), al = 1 in further considerations,
µ̄ = µ− Un

2 , n = n↑+n↓ � particle number, h̄ = h+ UM
2 ,

M = n↑ − n↓ � spin magnetization, Ek↑,↓ = ±ϵ−k + ωk,

ωk =
√
(ϵ+k )

2 + |∆|2, β = 1/kBT .

For d = 2, h = 0, r = 1, the transition from the SC to
the normal (NO) state in the AHM is of the Kosterlitz�
Thouless (KT) type if n ̸= 1. The KT temperature
(TKT

c ) can be determined from the universal relation:

kBT
KT
c =

π

2
ρs
(
TKT
c

)
. (3)

In the strong coupling limit (|U | ≫ t), AHM (U < 0,
h = 0, r ̸= 1) is mapped (via the canonical transfor-
mation [17, 18]) onto the pseudo-spin model (with the
Hamiltonian operating in the subspace of states with-
out single occupancy). After the transformation to the
bosonic operators, this Hamiltonian describes a system
of hard-core bosons on a lattice [14]∗:

H = −1

2

∑′

i,j

Jij

(
b†i bj +H.c.

)
+
∑′

i,j

Kijninj

− µ̃
∑
i

ni, (4)

with the commutation relations [19�21]: [bi, b
†
j ] = (1 −

2ni)δij , b
†
i bi + bib

†
i = 1, where ni = b†i bi. Jij = 2

t↑ijt
↓
ij

|U | ,

∗ In Eq. (4) of Ref. [14], in the constant energy term J0 should be
replaced by K0.

Kij = 2
(t↑ij)

2+(t↓ij)
2

2|U | , µ̃ = 2µ+|U |+K0 � chemical poten-

tial for bosons, K0 =
∑

j Kij , primed sum excludes terms
with i = j. If r ̸= 1, the charge density wave ordered
(CO) state can develop for any particle concentration.
The SC to CO transition is of a �rst order at h = 0, r ̸= 1
and n ̸= 1. The critical n (nc) (within the mean �eld
(MF) approximation) above which SC can coexist with

commensurate CO is given by [21, 22]: nc = 1±
∣∣∣ r−1
r+1

∣∣∣.
2. Numerical results

Here we continue our analysis performed in Ref. [14].
Below we present further numerical results concerning
the evolution from the weak (BCS-like) to the strong cou-
pling limit of tightly bound LP's with increasing |U |, for
d = 2 and r ̸= 1. The system of self-consistent equa-
tions [15, 16] has been solved numerically. The �rst
order transition lines were determined from the condi-
tion ΩSC = ΩNO, at �xed chemical potential, where ΩSC

and ΩNO are the grand canonical potentials of SC and
NO states, respectively. Then, these results have been
mapped onto the case of �xed n. The diagrams have
been obtained mostly for low n. We use t as the unit.

Fig. 1. Critical magnetic �eld vs. chemical potential
diagram for d = 2 at �xed U = −12, r = 7, and r = 3
(inset). SC0 � unpolarized SC state with n↑ = n↓,
SCM � magnetized SC state, NO-II � fully polarized
normal state, ε � empty state, µm � half of the pair
chemical potential de�ned as: µm = µ−ϵ0+

1
2
Eb, where

ϵ0 = −4t, Eb is the binding energy for two fermions in
an empty lattice. Red point � hSCM

c , blue point �
tricritical point. These points are close to each other
for chosen parameter values. The dotted red and the
solid green lines are continuous transition lines. The
dashed black line is the 1st order transition line.

Figure 1 shows the phase diagrams at �xed µm and h,
on the LP side. We de�ne µm = µ− ϵ0+

1
2Eb as one half

of the pair chemical potential (molecular potential). It is
worth mentioning that in 2D system at r = 1 the Sarma
or the breached phase is unstable even in the strong cou-
pling limit. In Fig. 1 (inset) there is only �rst order
phase transition from pure SC0 to the NO phase (with
increasing h) at �xed r = 3. However for higher value of
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the hopping ratio (r = 7), we observe also a continuous
phase transition from SC0 to SCM , with decreasing the
chemical potential and increasing magnetic �eld. The
character of transition from the superconducting to the
normal phase changes with decreasing µ. Hence, we also
�nd a tricritical point (TCP) in the diagram (blue point),
at which a second order transition from SCM to NO-II
terminates. We can have the following sequences of tran-
sitions: SC0 → NO-II or SC0 → SCM → NO-II. The
SC0 → SCM is a topological quantum phase transition
(the Lifshitz type). There is a cusp in the order param-
eter vs. magnetic �eld plots (for �xed n, for µ vs. h as
well). There is also a change in the electronic structure.
In SC0 phase there is no FS but in SCM state is one FS
for excess of fermions. On can notice that the presence
of the Hartree term restricts the range of occurrence of
the SCM phase except for a very dilute limit.

Fig. 2. Polarization vs. on-site attraction ground state
phase diagram at �xed n = 0.1 and r = 7, for the square
lattice. SC0 � unpolarized SC state with n↑ = n↓,
SCM � magnetized SC state, NO-I (NO-II) � par-
tially (fully) polarized normal states. PS-I (SC0+NO-I)
� partially polarized phase separation, PS-II (SC0

+NO-II) � fully polarized phase separation, PS-III �

(SCM+NO-II). Red point � |U |SCM
c (quantum critical

point), blue point � tricritical point, green point � the
BCS-BEC crossover point in the SC0 phase.

In Fig. 2 we present the P − |U | ground state dia-
gram for low electron concentration n = 0.1 and �xed r,
at h ̸= 0. As mentioned before, in 2D system at
r = 1, for h ̸= 0, the SCM phase is unstable even in
the strong coupling limit and the phase separation (PS)
is favourable. This is in opposition to the 3D case in
a Zeeman magnetic �eld [12] in which for r = 1 the
SCM phase occurs for strong attraction and in the dilute
limit. However, for r ̸= 1 SCM in d = 2 can be stable.
These types of solutions (with ∆(h)) appear (for r > 1)

when h >
(

r−1
r+1

)
µ̄ + 2∆

√
r

r+1 (on the BCS side) or when

h >
√
(µ̄− ϵ0)2 + |∆|2 −D r−1

r+1 (on the LP side) [14]. In

the weak coupling limit the Sarma phase (BP-2) is unsta-
ble at T = 0 and PS is favoured for a �xed n. However,
there is a critical value of |Uc|SCM (red point in the dia-
gram), for which the SCM state becomes stable, instead

of PS. The transition from SCM to NO can be accom-
plished in two ways for �xed n: through PS-III (SCM+
NO-II, where NO-II � fully polarized normal state) or
through the second order phase transition for higher |U |.
The change of the character of this transition manifests
itself through TCP. Therefore, the magnetized supercon-
ducting state is stable only on the BEC side, for r ̸= 1
in d = 2 (see Fig. 2, P > 0). If r ̸= 1, the symmetry
with respect to h = 0 is broken. Hence, the diagram is
not symmetric with respect to P = 0 and for P < 0 the
PS is favorable instead of SCM in LP limit (Fig. 2). It is
worth to mention that the presented phase diagram has
been constructed without the Hartree term because such
a term restricts SCM occurrence to a very dilute limit.

We have also extended our analysis to the �nite tem-
peratures. The KT phase transition is revealed by the
universal jump of the super�uid density (3)�(2).

Fig. 3. Temperature vs. polarization phase diagrams
without the Hartree term, at �xed n = 0.1, r = 7, for
the square lattice. (a) U = −3, (b) U = −11.5. The
thick dashed-double dotted line in red color is the KT
transition line. Thick solid line denotes transition from
pairing without coherence region to NO within the BCS
approximation. Above the dotted line (red color) �
gapless (yellow color) � the region which has a gapless
spectrum for the majority spin species. SC � 2D KT
superconductor, SCM � gapless KT SC with one FS in
the presence of polarization (a spin polarized KT super-
�uid).

Figure 3 shows T�P phase diagrams for n = 0.1, r = 7,
at h ̸= 0 and two values of the attraction � moderate
weak (U = −3, Eb/EF = 0.024) and strong (U = −11.5)
coupling. These diagrams have been constructed within
the mean �eld approximation (the solid lines (2nd order
transition lines), PS and gapless regions), but the phase
coherence temperatures have been obtained within KT
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scenario (thick dash-double dotted line (red color)). In a
strict theory, below KT temperature (TKT

c ) the system
has a quasi-long-range (algebraic) order. In our approach
this is characterized by the non-zero gap (∆ ̸= 0) and
non-zero super�uid sti�ness (ρs ̸= 0). In a weak coupling
regime the KT SC exists at low |P | and low T (Fig. 3a).
The SC phase is restricted to low |P |, while for larger
|P | the PS region is favored. There is also the region
of pairs without coherence, i.e. nonsuper�uid, formally
de�ned by ∆ ̸= 0, ρs = 0. In this region one observes a
pseudogap behavior. Therefore, the region of incoherent
pairs is di�erent from the normal phase. In the T�P
diagrams (Fig. 3a), one �nds MF TCPs at which the
thermal transition changes from the second to the �rst
order. We also show the gapless area within the state of
pairing without coherence. This gapless region is above
KT coherence temperatures in the weak coupling limit.
In the intermediate coupling, below TKT

c the SC is
strongly reduced to very low |P |. In the BCS-LP
crossover point a polarized SC does not exist even for
r ̸= 1.
The situation is radically di�erent in the spin asym-

metric hopping and strong coupling case (Fig. 3b). For
su�ciently high value of r, below TKT

c curve, a spin po-
larized KT super�uid state with gapless spectrum and
one FS can be stable for all P > 0. If P < 0 there is a
PS region at low T .
In the strong coupling limit, TKT

c does not depend
on the magnetic �eld, but it depends on the hopping

(mass) ratio: kBT
KT
c = 2π r

(1+r)2
t2

|U |n(2 − n) (r > 0,

n < nc) [14]. This estimate for hard-core bosons (Hamil-
tonian (4)) gives upper bound on transition temperature
in the strong coupling limit. The results obtained from
Eqs. (2), (3) in a deep bosonic regime are in very good
agreement with those obtained from the strong coupling
expansion.

3. Conclusions

We have investigated the e�ect of a Zeeman mag-
netic �eld and the hopping imbalance on the BCS-BEC
crossover at T = 0 and �nite temperatures, for the 2D
attractive Hubbard model.
We have obtained that if r = 1, the SCM phase is un-

stable in d = 2 even on the LP side. The e�ect of the
Zeeman magnetic �eld and hopping asymmetry combina-
tion (population and mass imbalance) can stabilize SCM

phase on the LP side of crossover. This magnetized su-
per�uid state, occurring for strong attraction and lower
�lling, is characterized by one FS and a gapless spectrum
for the majority spin species. At T = 0, the BP-2 phase
is unstable both for r = 1 and r ̸= 1 on a 2D lattice.
We have also extended the BCS-LP crossover analysis

to �nite temperatures in d = 2 by invoking the KT sce-
nario. In a weak coupling regime the spin polarization
has a destructive in�uence on the KT super�uid state at

r = 1 and r ̸= 1. However, we have found that the range
of P for occurrence of a spin-polarized KT super�uid is
much larger on the LP side.
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