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Entangled Spin-Orbital Phases in the d9 Model
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We investigate the phase diagrams of the spin-orbital d9 Kugel�Khomskii model for a bilayer and a monolayer
square lattice using the Bethe�Peierls�Weiss method. For a bilayer we obtain valence bond phases with interlayer
singlets, with alternating planar singlets, and two entangled spin-orbital phases, in addition to the antiferromag-
netic and ferromagnetic order. Possibility of such entangled phases in a monolayer is under investigation at present.
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1. Introductions

It has been shown that quantum �uctuations are en-
hanced near the orbital degeneracy and could suppress
long-range order in the Kugel�Khomskii (KK) model [1],
called below the d9 model. This model was introduced
long ago for a perovskite KCuF3 [2], a strongly correlated
system with a single hole within degenerate eg orbitals at
each Cu2+ ion. Kugel and Khomskii showed that orbital
order can be stabilized by a purely electronic superex-
change mechanism. This happens for strongly frustrated
orbital superexchange [3], and columnar Ising-type of or-
der is obtained [4] in the two-dimensional quantum com-
pass model. This model exhibits nontrivial symmetry
properties which may be employed to perform e�cient
calculations for square compass clusters [5].
Orbital order occurs in a number of compounds with

active orbital degrees of freedom, where strong Coulomb
interaction localizes electrons (or holes) and gives rise to
spin-orbital superexchange [6]. When spin and orbital
pseudospins couple to each other, their order is usually
complementary � alternating orbital (AO) order accom-
panies ferromagnetic (FM) spin order, and ferro-orbital
(FO) order coexists with antiferromagetic (AF) spin or-
der. However, the above Goodenough�Kanamori rules,
see also [3], are not satis�ed in cases when spin-orbital
entanglement (SOE) dominates [7], as for instance in the
spin-orbital d1 model on a triangular lattice [8].

2. Theory

The spin-orbital superexchange KK model for
Cu2+ (d9) ions in KCuF3 with S = 1/2 spins and eg or-
bitals descibed by τ = 1/2 pseudospin was derived from
the degenerate Hubbard Hamiltonian with hopping t, in-
traorbital Coulomb interaction U and Hund's exchange
JH [9]. It describes the Heisenberg SU(2) spin interac-
tions coupled to the orbital problem by superexchange
J = 4t2/U ,
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where {r1, r2, r3} depend on η ≡ JH/U [9], and γ = a, b, c
is the bond direction. In a bilayer two ab planes are con-
nected by interlayer bonds along the c axis [10] (a mono-
layer has only bonds within a single ab plane). Here
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are projection operators on a triplet (singlet) con�gura-
tion on a bond ⟨ij⟩, and τγi are the orbital operators for
bond direction γ = a, b, c. They are de�ned in terms of
the Pauli matrices {σx

i , σ
z
i } as follows:
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Finally, Ez is the crystal-�eld splitting which favors ei-
ther x ≡ x2 − y2 (if Ez > 0) or z ≡ 3z2 − r2 (if Ez < 0)
orbitals occupied by holes. Thus the model Eq. (1) de-
pends on two parameters: Ez/J and η.

The spin-orbital model Eq. (1) describes also CuO2

planes in La2CuO4, where indeed U ≫ t and large
Ez/JH ≈ 0.27 favors holes within x orbitals [9]. The su-
perexchange between Cu2+ ions ≈ 0.127 eV reproduces
there the experimental value. In this paper we consider
the model Eq. (1) for K3Cu2F7 bilayer compound where
nearly degenerate eg orbitals are expected. It has been
shown that the magnetic state of K3Cu2F7 is described
by interlayer valence bond (VB) phase stabilized by FOz
order with z orbitals occupied by holes [11].

We show below that the bilayer spin-orbital d9 model
Eq. (1) describes a competition between di�erent types
of spin-orbital order. Consider �rst |Ez| → ∞, where
depending on the sign of the crystal �eld Ez we get
either FOz or FOx con�guration with ⟨τ ci ⟩ ≡ ±1/2

and ⟨τa(b)i ⟩ ≡ ∓1/4. After inserting these values into
Eq. (1) one �nds the Heisenberg model describing either
an AF bilayer (Ez → −∞) or two independent AF planes
(Ez → ∞) as in La2CuO4. In the limit of η → (1/3)−,
the coe�cient r1 = 1/(1 − 3η) diverges and at large
η > 0.26 one �nds fully FM con�guration with AO order.
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The simplest approach is a single-site mean �eld (MF)
approximation applied to the model Eq. (1). It excludes

any spin �uctuations so the spin projectors Π
t(s)
⟨ij⟩ (Π s

⟨ij⟩)

can be replaced by their mean values, where the depen-
dence on the bond ⟨ij⟩ reduces to direction γ in phases
with translationally invariant magnetic order listed in
Table: the G-AF phase, the C-AF phase with AF planes
and FM interplane bonds, the A-AF phase with FM
planes and AF interplane bonds and the FM phase.

TABLE

Mean values of triplet and singlet spin projection opera-
tors (2) for a bond ⟨ij⟩ in the ab plane and along the axis
c in magnetic phases with long range order, see Fig. 1.

Average G-AF C-AF A-AF FM

ab plane ⟨Π t
⟨ij⟩⟩ 1/2 1/2 1 1

⟨Π s
⟨ij⟩⟩ 1/2 1/2 0 0

c axis ⟨Π t
⟨ij⟩⟩ 1/2 1 1/2 1

⟨Π s
⟨ij⟩⟩ 1/2 0 1/2 0

3. Results and discussion

In the orbital sector we apply then the MF decoupling
for the products {τγi τ

γ
i±γ} along the axis γ:

τγi τ
γ
i±γ ≈ ⟨τγi ⟩τ

γ
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γ
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As order parameters we take ta ≡ ⟨τa1 ⟩ and tc ≡ ⟨τ c1 ⟩ for
a chosen site i = 1 (which is su�cient in orbital sector as
tb = −ta−tc) and we assume two orbital sublattices: each
neighbor of the site i is rotated by π/2 in the ab plane

meaning that ⟨τa(b)i−γ ⟩ = tb(a). The self-consistency equa-

tions can be solved analytically (see Ref. [10]) and the
phase diagram of Fig. 1a is obtained by comparing the
ground state energies for di�erent points in the (Ez/J, η)
plane. One �nds two classes of solutions: (i) uniform or-
bital con�gurations (tc = ±1/2, ta(b) = ∓1/4) for global
FO order, and (ii) nontrivial AO order with orbitals stag-
gering from site to site in ab planes.
For η = 0 we have only two AF phases, see Fig. 1a:

G-AFz for Ez < −J/4 and G-AFx for Ez > −J/4, with
di�erent FO orders involving z or x orbitals, respectively.
Because of the planar orbital con�guration in the latter
G-AF phase one �nds no interplane spin coupling and
thus this phase is degenerate with the C-AF one. For
higher η the number of phases increases abruptly by three
phases, all with AO con�gurations: the A-AF, G-AF/AO
and C-AF/AO phase. Surprisingly, the AO version of
the G-AF phase is connected neither to FOz nor to FOx
order in an antiferromagnet, excluding the multicritical
point at (Ez/J, η) = (−0.25, 0), and disappears com-
pletely for η ≈ 0.118. The C-AF/AO phase stays on
top of uniform G(C)-AF phase, lifting their degeneracy
at relatively large η and then gets replaced by the FM
phase which always coexists with AO order, so one can
conclude that the G-AF/C-AF degeneracy is most easily
lifted by turning on the orbital alternation. On the op-
posite side (for Ez < 0), the G-AFz phase is completely

Fig. 1. Phase diagrams of the d9 bilayer model (1) ob-
tained in: (a) a single-site MF, and (b) a cluster MF.
In (a) shaded (green) area indicates phases with non-
trivial AO order while the other ones have FO order.
In (b) light shaded (yellow) area marks singlet phases
with spin disorder and dark (orange) shading indicates
phases with SO entanglement.

surrounded by A-AF phase with AO order. In the A-AF
phase the AF correlations in the c direction survive de-
spite the overall FM tendency when η grows. This fol-
lows from the orbitals' elongation in the c direction which
stabilizes interplane singlets in a better cluster MF ap-
proach, see below. Finally, the FM phase is favored for
any Ez if only η is su�ciently close to 1/3, as expected.

In a better cluster MF (or the Bethe�Peierls�Weiss)
approach, introduced to capture the e�ects of quantum
�uctuations, one divides the bilayer square lattice into
separate cubes containing 8 sites each and treats the
bonds inside a cube exactly, and the bonds connect-
ing di�erent cubes in MF. This approach has at least
three advantages over the single-site MF: (i) spins can
�uctuate, (ii) elementary cell can double, and (iii) we
can have independent spin-orbital order parameter. The
MF leads in a cluster to three order parameters: mag-
netic ⟨s⟩ ≡ Sz

1 , orbital t
a(b), and on-site SOE ra(b) ≡

⟨Sz
1τ

a(b)
1 ⟩ − sta(b).

The self-consistency equations take rather complicated
form (for details see Ref. [10]) and can be solved only
numerically by time-consuming iterative Lanczos diago-
nalization of a cluster combined with updating the MFs.
In orbital sector apart from the AO order described ear-
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Fig. 2. Order parameters spin s, orbital ta(b) and on-
-site SOE ra(b) for η = 0.15 and for increasing: (a) Ez

in a bilayer in the ESO, EPVB, and PVB phase, for
T = 0; (b) T in a monolayer in the ESO, AO�PM, and
PM phase, for Ez = −0.6J .

lier, we consider con�gurations where orbitals within a
cluster break the symmetry between a and b directions
but the neighboring clusters are rotated by π/2 in the
ab plane, so globally the symmetry is preserved and the
elementary cell is doubled. In the spin sector we consider
the same con�gurations as in a single-site approach.
Including spin �uctuations in the cluster MF approach

stabilizes the G-AF phase with x orbitals over the FM
one (Ez > 0) but suppresses it when z orbitals are �lled
by holes (Ez < −J/4), and gives instead three singlet
VB phases called: PVB (plaquette VB), VBz, and VBm,
see Fig. 1b. VBz phase replaces G-AFz phase shown in
Fig. 1a and involves interplane singlets accompanied by
FOz con�guration. This phase was observed in K3Cu2F7

by Manaka et al. [11] � here we explain it for realistic
η ≈ 0.14. The VBm phase is very similar to VBz but
with slightly modi�ed FO order by an AO component
increasing toward the A-AF phase. Transition from VBm
to VBz is of the second order. In the PVB phase spin
singlets are pointing uniformly in a or b direction within
the cluster and the elementary cell is doubled.
A di�erent class of phases involves SOE � these are

the ESO, EPVB and PVB-AF phase. All of them ex-
hibit SOE but only the ESO and EPVB ones lie in the
highly frustrated part of the phase diagram and have
large on-site entanglement ra(b), as shown in Fig. 2a. The
PVB-AF phase connects PVB and G-AF phases by sec-
ond order phase transitions and is characterized by fast
changes in orbital order and appearance of global mag-
netization. The ESO phase has no magnetization and
FO order is here much weaker than in the VBz phase.
When Ez grows, the ESO phase does change continu-
ously into the EPVB con�guration, being an entangled
precursor of the PVB phase, with doubling of the unit cell
and �nite AF order which vanishes smoothly approach-
ing the PVB phase. Additional calculations described in
[10] show that these entangled phases are absent if one

assumes that ⟨Sz
1τ

a(b)
1 ⟩ factorizes, i.e., ra(b) = 0.

Using the same cluster MF approach as above one can
easily study the phase diagram of the KK model for a

single layer at �nite temperature T . At T = 0 one �nds
the AF, FM, and PVB phases together with an ESO
phase between the AF and FM phases. Turning on the
thermal �uctuations we have found that typically the or-
bital order is much more robust than the magnetic one
and the orbital con�guration compatible with lattice ge-
ometry can greatly stabilize spin order. In Fig. 2b we
present the thermal evolution of the order parameters
{s, ta(b)} and on-site SOE parameter ra(b) in the ESO
phase which melts and ends up as an ordinary paramag-
netic (PM) phase. More details and the phase diagrams
will be reported elsewhere.

4. Conclusions

Summarizing, we have shown that spin-orbital entan-
glement leads to exotic types of order which are stabilized
by quantum �uctuations both in bilayer and monolayer
systems. They emerge from highly frustrated spin-orbital
superexchange and could be discovered only within a
cluster mean �eld approach.
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