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The current�voltage characteristic of the narrow superconducting channel is investigated by direct numerical
integration of the time-dependent Ginzburg�Landau equations. We have demonstrated that the steps in the
current�voltage characteristic correspond to a number of di�erent bifurcation points of the time-dependent
Ginzburg�Landau equations. We have analytically estimated the period and the averaged voltage of the oscillating
solution for the relatively small currents. We have also found the range of currents where the system transforms
to the chaos.
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1. Introduction

It is well known that the superconducting state trans-
forms to a resistive state at some critical current jc. In
this state superconductivity and a static electric �eld co-
exist. Above a certain current j2 the superconducting
state is absolutely unstable and a system transforms to a
normal state. Therefore, the resistive state exists in the
current interval jc < j < j2. The order parameter (OP)
of a superconductor in the resistive state vanishes in a
set of sample points. In these points the phase of the
OP exhibits 2π jump. This process appears periodically
in time. These points are well known as the phase slip
centers (PSCs). The PSC's phenomena were comprehen-
sively investigated in the past. It has been shown that
the current�voltage characteristic (CVC) of the resistive
state of a superconductor possesses a stair like structure.
Every step of it corresponds to the point where a new
PSC penetrates to the wire [1, 2].
Recently, the properties of the resistive state of di�er-

ent types of superconductors in the j = const [3�6] or
V = const [3, 7, 8] regime have been investigated on the
basis of the time-dependent Ginzburg�Landau equations
(TDGLEs) [9]. The authors of Ref. [6] have decomposed
the two-dimensional parameter space of temperature and
current into regions of stability of a normal, steady, and
oscillatory state. It has been found out that di�erent
periodic and quasiperiodic in time solutions emerge with
the change of voltage [7, 8]. Recent experimental obser-
vations [10] have revealed the space�time arrangement of
the PSCs. Using the low temperature laser scanning mi-
croscopy technique it has been demonstrated that each
voltage jump on the CVC corresponds to a generation of
a new PSC [10]. The authors have observed the creation
of one PSC at certain critical current. Further increase
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of the current leads to the spatial rearrangement of the
PSCs � two PSCs appear symmetrically with respect to
the center of the wire. Finally, the third PSC appears in
the middle of the wire (see Fig. 2 of Ref. [10]).
Based on the previous works [7, 8, 11] we know the sig-

ni�cance of the length of the wire on the properties of the
system. Here we present the more detailed study of the
narrow superconducting channel of length L/ξ = 21.76,
where ξ is the coherence length. Firstly, we analytically
estimate the period of the oscillatory solution in the vicin-
ity of the critical current. Then we demonstrate that
each step on the CVC correspond to a number of dif-
ferent bifurcation points of the TDGLEs and reveal the
bifurcations' types.

2. Theory

For the complex order parameter ψ = ρ exp(iθ), where
ρ and θ are the modulus and phase of the OP respectively,
the TDGLEs in dimensionless units take the form
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wherein the distance and time are measured in units
of the coherence length ξ and phase relaxation time
τθ = 4πλ2σn/c

2, respectively, where λ is the penetration
depth, σn is the normal state conductivity, and c is the
speed of light. The electrostatic potential ϕ is written in
units of ϕ0/2πcτθ, where ϕ0 = π~c/e is the �ux quantum,
e is the electric charge, ~ is the reduced Planck constant.
The current density j is de�ned in units of ϕ0c/8π

2λ2ξ.
The only parameter left is u = τρ/τθ, where τρ is the
relaxation time of the amplitude of the OP.
Here we consider the superconducting wire of a length

L with the following boundary conditions: ρ(−L/2) =
ρ(L/2) = 1 and dϕ(−L/2)/dx = dϕ(L/2)/dx = 0. The
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absence of the electric �eld at the end of the wire de-
termines the gradient of the phase: dθ(−L/2)/dx =
dθ(L/2)/dx = j. In the present paper, to model a real-
istic situation we assume u = 1/2 [12].
The analysis of the steady state of the TDGLEs (1, 2)

demonstrates that the equation for the current j =
k(1 − k2) has two roots when j < jc. One of them is
stable and the other is unstable. As soon as the current
reaches its critical value j = jc, they collide with each
other. In addition, according to our calculations, a limit
cycle appears in the system at this point. Besides, only
one Lyapunov exponent crosses zero at this moment [13].
Therefore, we deal with a saddle-node homoclinic bifur-
cation at j = jc [14].
To �nd out the features of the saddle-node homoclinic

bifurcation we rewrite the TDGLEs (1, 2) in the limit of
an in�nite channel. By introducing the gauge invariant
scalar Φ = ϕ + ∂θ/∂t and vector Q = ∂θ/∂x potentials
we obtain

u∂ρ/∂t = ∂2ρ/∂x2 + ρ(1− ρ2 −Q2),

uρ2Φ = ∂(ρ2Q)/∂x,

j = −∂Φ/∂x+ ∂Q/∂t+ ρ2. (3)

These equations have the steady state solution ρ =√
2/3, Φ = 0, Q = 1/

√
3, j = jc, which becomes unsta-

ble and has one Lyapunov exponent λ0 which crosses zero
at j = jc. Expansion of Eq. (3) up to the second order
in deviations from the steady state solution, rescaling of
the time t/u→ t, and projection of this equation on the
direction of the eigenvector corresponding to λ0 yield

ẏ = β + a(0)y2, (4)

where y is a representative phase variable, β =
−23/2u(j − jc)/3(u + 2)jc, a(0) = −23/2u/(u + 2). In-
tegration of Eq. (4) over y between ±y1, where y1 is of

the order of 1 yields T = 2 tan−1(y1
√
a(0)/β)/

√
a(0)β.

Therefore, if (j − jc)/jc ≪ 1, the period of oscillations is
determined by the formula

T = π/
√
a(0)β =

π
√
3(u+ 2)

23/2u
[(j − jc)/jc]

−1/2
. (5)

We have solved Eqs. (1) and (2) numerically by using
the fourth order Runge�Kutta method. Since we inves-
tigate the wire of the �nite length, the critical current
in our system jc is not equal to the critical current in
the Ginzburg�Landau theory jGL = 2/3

√
3 for an in�-

nite wire. Our calculations show that the critical current
jc/jGL = 1.002.

3. Results and discussion

The results of our calculations of the period of the os-
cillating solution together with the analytical estimation
(Eq. (5)) are presented in Fig. 1. There is a very good
agreement of numerical results with Eq. (5) over more
than two orders of magnitude in (j − jc)/jc.
According to the Josephson relation [1] and Eq. (5) the

voltage in the vicinity of the saddle-node homoclinic bi-

Fig. 1. The period of the solution as a function of
the current. The solid line represents the result of
Eq. (5). Arrow indicates the period-doubling bifurca-
tion point jc1. Insets represent projection of the limit
cycle trajectory to the (ρ(0), E(0)) plane before (a) and
after (b) the bifurcation point. Here ρ(0) is the modulus
of the OP, E(0) is the electric �eld both in the center
of the wire.

furcation V ∝ T−1 ∝ [(j − jc)/jc]
1/2. Inset (f) of Fig. 2

clearly demonstrates this behaviour for the region of cur-
rents jc < j < jc1. For this range of currents the PSC
appears in the middle of the wire periodically in time
(Fig. 2a) in agreement with the experimental results [10].

Fig. 2. The CVC of the channel. Insets (a)�(e) show
the space�time PSC's arrangement in the di�erent re-
gions of the CVC. Inset (f) represents the CVC for
j < jc1 in comparison with analytical formula (see the
text).

Further increase of the current leads to the bifurca-
tion of the periodic solution. In the insets to Fig. 1 we
have plotted the phase trajectories of the periodical so-
lutions below and above j = jc1 in coordinates ρ(x = 0)
and electric �eld E(x = 0) = −dϕ/dx. A single-
-loop (period-1) limit cycle transforms to a double-loop
(period-2) limit cycle at jc1/jGL = 1.012 as a result of
the period-doubling bifurcation. This bifurcation causes
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an increase of the period as it is clearly seen from Fig. 1.
It also results in the change of the CVC's slope. As it
follows from Fig. 2b, the space�time arrangement of the
PSCs is changed similarly to Ref. [7]: two adjacent PSCs
are shifted in the opposite directions with respect to the
center of the wire in agreement with the experimental
observations [10]. Now the period includes two PSCs.
It causes an increase of the period of the limit cycle by
twice. As a result of period-doubling, a new frequency
ω2 = ω1/2 appears in the spectrum of an electromagnetic
radiation generated by the current. However, we have not
observed the PSCs in the center of the wire, in contrast
to results in Ref. [7]. It may be related to the fact that
the authors of Ref. [7] have performed calculations with
di�erent parameter u = 1. Moreover, we consider the
channel in the j = const regime, while in Ref. [7] the
TDGLEs have been studied at constant voltage.
The next bifurcation is the destruction of the limit cy-

cle. At jc2/jGL = 1.027 the limit cycle loses stability.
The space�time arrangement of the PSCs in this area is
similar to the current's region jc1 < j < jc2 (see Fig. 2c).
For the range of currents jc2 < j < jc5 we have found
oscillating, but non-periodic solution.
To investigate the system's behavior in the vicin-

ity of this bifurcation we calculate the Poincaré map.
The projection of the phase trajectory to the plane
(ρ(−L/4), E(−L/4)) never crosses the space near the
center of the trajectory. Therefore we chose the Poincaré
section as a plane which crosses the center of this trajec-
tory E(−L/4) = 0.04 for j/jGL = 1.0278. In Fig. 3a we
plot the projection of the Poincaré map to ρ(0) and E(0)
as a function of discrete time, when trajectory crosses the
Poincaré section. Our calculations demonstrate that the
wire has two possible states in the vicinity of this bifurca-
tion. There are a number of long time intervals where the
system stays near the laminar oscillation phase. Then,
due to the instability, it moves far away from the limit cy-
cle and enters the turbulent motion phase. After a while
it comes back to the regular orbit. It is clearly seen from
Fig. 3b that the period of the laminar phase is increasing
with the decrease of the current. The solid line here rep-
resents the τ ∝ (j − jc2)

−1/2 law. Therefore, the chaotic
behaviour of the solution of the TDGLEs is developing
via the intermittence [15].
The bifurcation point jc3/jGL = 1.058 corresponds to

the appearance of a new PSC in the center of the wire
(Fig. 3d) without changing the non-periodic character of
the oscillating solution. At this point the CVC exhibits
the voltage jump. In the vicinity of this bifurcation we
have observed so-called �periodic windows� � areas of
the parameter values, where the limit cycles with a rela-
tively large period become stable [15].
The fourth PSC appears in the wire at jc4/jGL = 1.084

(Fig. 2e). It considerably changes the slope of the CVC,
but does not destroy the chaos. And �nally, at jc5/jGL =
1.092 the limit cycle becomes stable. At this bifurcation
point the voltage decreases in contrast to all previous
cases.

Fig. 3. (a) The projection of the Poincaré map on ρ(0)
(solid line) and E(0) (dashed line) as a function of time.
(b) The period of the laminar oscillation phase as a func-
tion of the current (squares). The solid line shows ana-
lytical prediction (see the text).

4. Conclusions

We have explored the CVC of the narrow supercon-
ducting channel. We have demonstrated that the steps
of the CVC correspond to a number of di�erent bifur-
cation points of the TDGLEs. The voltage appearance
in the system corresponds to the saddle-node homoclinic
bifurcation leading to the formation of the limit cycle
with a diverging period when j → jc. The voltage
V ∝ (j − jc)

1/2 in this region. We have also analyti-
cally estimated the period of oscillations in the vicinity
of this bifurcation point. The second singularity corre-
sponds to the period-doubling bifurcation. As a result
of this bifurcation, a new frequency equals to the half of
the frequency before the bifurcation appears in the spec-
trum. We have also proved that the chaos appears via
the intermittence.
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