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We show that the properties of the ideal Bose gas in three-dimensional optical lattice can be closely mimicked
by �nite two dimensional systems with only ten of layers. The match between critical properties strongly depends
on the anisotropy of the hopping amplitudes in and between layers which we fully control. The theory we provided
can be directly used in the experiments and results in less challenging requirements of the setups. We also present
the phase diagram with its non-monotonic dependence of the ratio of tunneling to on-site repulsion when arti�cial
magnetic �eld is applied to the system.
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1. Introduction

The merging of atomic and condensed matter physics
since the experimental realization of the Bose�Einstein
condensation (BEC) has opened exciting new perspec-
tives for the creation of novel quantum states. Systems
of dilute bosonic gases con�ned in optical lattices are
ideal toolboxes for testing theoretical models and their
solutions [1]. Surprisingly, the quantum phase transi-
tions in systems under uniform magnetic �eld can be also
analyzed considering rotating Bose�Einstein condensates
trapped in a two-dimensional (2D) lattice potential. In
frame of reference rotating about the z-axis with angular
velocity Ω the kinetic term in Hamiltonian is equivalent
to that of a particle of charge q experiencing a magnetic
�eld B with qB = 2mΩ , where m is the mass of the
particle. This connection shows that the Coriolis force
in the rotating frame plays the same role as the Lorentz
force on a charged particle in an uniform magnetic �eld.
The presence of angular velocity induces vortices in the
system described by the rotation frustration parameter
f (≡ ma2Ω/π~, with a being the lattice spacing). Frus-
tration occurs in this system because two di�erent area
scales are in competition. One characteristic area is the
unit cell a of considered lattice. The other π~/mΩ is
associated with the rotation of the lattice. However,
this approach puts limit on maximum rotational velocity,
thus large synthetic magnetic �eld SMF (e.g. required for
quantum Hall physics) cannot be reached. To overcome
those di�culties, imprinting of the quantum mechanical
phase is used, which is based on superimposing of an ex-
ternal potential on a BEC [2]. The developing in trapping
techniques provides presently one layer resolution of cre-
ation stacked structures. The method many groups are
operating with involves another one-dimensional optical
lattice that is used to split a magnetically trapped 3D
BEC into a small array of 2D clouds. After that the sam-
ple is cleaned with the resonant depumping laser. From
the experimental point of view our work provides results
that can be immediately accessed.

2. Model

In optical lattices, two main energy scales are set by
the hopping amplitude t (the kinetic energy of bosons
tunneling between the lattice sites), and the on-site re-
pulsive interaction U (resulting from repulsion of multiple
boson occupying the same lattice site). For t ≫ U , the
super�uid order is well established in zero-temperature
limit. However, for su�ciently large repulsive energy U ,
the quantum phase �uctuations lead to suppression of
the long-range phase coherence resulting in SF (super-
�uid) to MI (Mott-insulator) transition. The synthetic
magnetic �eld B (resulting either from rotation of the
system, phase imprinting, or external electric �eld) in-

troduces the Peierls phase factor exp
(

2π i
Φ0

∫ ri

rj
A · dl

)
,

where B = ∇ ×A (r), and Φ0 = hc/e is the �ux quan-
tum, with A (r) being the vector potential (which can
be realized experimentally, see Ref. [2]), and h, c and e
� the Planck constant, speed of light and charge of elec-
tron, respectively. Thus, the system can be described by
the following quantum Bose-Hubbard Hamiltonian [3, 4]:

H =
U

2
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nr(nr − 1)

−
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trr′ exp

(
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a†rar′ − µ
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(1)

where a†r and ar′ are for the bosonic creation and anni-
hilation operators that obey canonical commutation re-

lations [ar, a
†
r′ ] = δrr′ , nr = a†rar is the boson num-

ber operator on the site r. Here, ⟨r, r′⟩ denotes sum-
mation over the nearest-neighbor sites. Furthermore,
trr′ is the hopping matrix element with the dispersion

tk = 2t∥

(
cos kx + cos ky +

t⊥
t∥

cos kz

)
where t⊥ is the

hopping between layers and t∥ within the planes. Since,
we are interested in investigating the in�uence of the lat-
tice geometry on the system properties, we consider a
stack an arbitrary number (L) of two-dimensional planes
coupled with t⊥. As a result, the values of kx and ky
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are continuous (kx,y = −π, . . . , π), while kz is discrete
(kz = 2π

L l, where l = 0, . . . , L− 1). Also, we allow for z-
axis anisotropy, which is a ratio of inter-plane to in-plane
hopping η = t⊥/t∥.

A boson hopping around a lattice cell of the area of A
will gain an additional phase 2πf resulting from the syn-
thetic magnetic �eld, where f = ABe/2π~. As a result,
the periodic potential leads to splitting of the Landau
levels into integer number q of sub-bands. Of special
interest are the values of the SMF which correspond to
rational numbers of f ≡ p/q = 1/2, 1/3, 1/4, ... (p is an
integer), since for those values the energy spectra and
the density of states can be obtained exactly. Here, we
present results for f = 1/8 and f = 3/8, which up to
now have been analytically inaccessible (see Ref. [5]).

To proceed, we rely on the quantum rotors approach.
The method is extensively described in Refs. [4, 6�8], so
here we only summarize its main points. We use the func-
tional integral representation of the model with bosonic
operators becoming complex �elds ar (τ) (where τ is
imaginary Matsubara's time). The most important ele-
ment of our method is a local gauge transformation to the
new bosonic variables: ai (τ) = bi (τ) exp (iΦi (τ)). This
allows to cast the strongly correlated bosonic problem
into a system of weakly interacting bosons, submerged
into the bath of strongly �uctuating gauge potentials on
the high energy scale set by U . As a result, the super�uid
order parameter can be written as ΨB ≡ ⟨ai (τ)⟩ = b0ΨB,
where non-zero value of ΨB=⟨exp (iΦi (τ))⟩ results from
phase ordering and b0 is the amplitude of the bosonic
�eld

b20 =

[
4 + 2

(
1− 1

L

)
t⊥
t∥

]
t∥

U
+
µ

U
+

1

2
. (2)

The coe�cient 4 + 2
(
1− 1

L

)
t⊥
t∥

is an e�ective number of

nearest neighbors averaged over all lattice sites. In the
zero-temperature limit we arrive at the equation for the
phase order parameter

1− ψ2
B =

1

2N

∑
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1√
Jk=0−Jk

U + υ2
(
µ
U

) (3)

with

υ
( µ
U

)
= frac

( µ
U

)
− 1

2
,

where frac(x) = x− [x] is the fractional part of the num-

ber and [x] is the �oor function which gives the greatest
integer less than or equal to x and the phase sti�ness
Jk = b20tk.

Since the number of layers L in the system is �nite, the
summation in Eq. (3) runs over discrete values of kz and
continuous values of kx and ky. However, because density
of states of a single layer under SMF (ρf ) is known, we
explicitly derive the density of states of the whole stack
of L coupled planes (for calculation details, see Ref. [9])
ρLf (η, ξ) =

1
L

∑
kz
ρf (ξ − η cos kz). As a result, the criti-

cal line equation (ψB = 0) including the e�ects of SMF
and z-axis anisotropy reads

1 =
1

2

∫ +∞

−∞
dξ

ρLf (η, ξ)√
2(ξ0 − ξ)b20

t∥
U + υ2

(
µ
U

) , (4)

with ξ0 being the half-width of the band dispersion for
selected value of f = p/q.

3. Results

Equation (4) allows us to calculate the zero-
-temperature phase diagram of the investigated Bose�
Hubbard model from Eq. (1) as a dependence of critical
interaction on the chemical potential, SMF, number of
layers and z-axis anisotropy(

t∥

U

)
z

= xz = xLf

( µ
U
, η
)
. (5)

The diagram is plotted in Fig. 1 for di�erent number of
layers L, synthetic magnetic �eld f = 1/2, in isotropic
case (η = 1). In the weak coupling limit (t∥ ≫ U), the
kinetic energy dominates and the ground state is a de-
localized super�uid, described by nonzero value of the
super�uid order parameter ΨB ̸= 0.

Fig. 1. The zero-temperature phase diagram of a stack
of square lattice planes (number of particles per lattice
site is nB = 1 inside the �rst and nB = 2 with magnetic
�eld f = 1/3 for various number L of layers and η = 1.
Within the MI phase the phase order parameterΨB = 0.

On the other hand, in the strong coupling regime
(t∥ ≪ U) the phase �uctuation becomes signi�cant and
the long-range order is destroyed leading to a series of
MI lobes with �xed integer �lling nB = 1, 2, . . . [3, 6].
A single-layer system (L = 1) has a simple square (two-
-dimensional) geometry, which results in the phase di-
agram with characteristic narrow-edged lobes. As the
number of layers is being increased, the tops of the lobes
become smooth and their maxima deviate towards lower
values of the chemical potential µ. As a result, the phase
diagram becomes similar to the one of a cubic (three-
dimensional) system. It is important to notice that also
in the presence of the synthetic magnetic �eld, the phase
diagrams of the �nite L system becomes indistinguish-
able from the in�nite (cubic) one for L as small as 10.
The phase coherent Bose gas can be also driven into

the Mott insulating phase by applying the synthetic mag-
netic �eld. The e�ect of the SMF is presented in Fig. 2.
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Fig. 2. Ratio of critical coupling xL
0 /x

L
f of the tip of

the �rst lobe of the system without (f = 0) and with
synthetic magnetic �eld f as a function of number layers
L for anisotropic system η = 0.3.

Fig. 3. Density of states with characteristic van Hove's
singularities in the arti�cial magnetic �eld for f = p/q =
3/8.

The long range order is suppressed by the phase changes
imposed on the bosonic wave function and this suppres-
sion has a non-monotonic character strongly depending
on the topology of the system. The Mott insulating phase
becomes more stable, which is as expected since the mag-
netic �eld should localize particles. In the single-layer
system, the e�ect of the SMF is the most pronounced
and this decreases with growing number of layers L. By
adding more layers the global coherence of the system
is restored, because growing dimensionality entails the
suppression of quantum �uctuations e�ects. Here, the
convergence of properties of the �nite system to those of
the in�nite (cubic) one is much slower, although also non-
trivially dependent on f . When the system is anisotropic
(see the bottom plot in Fig. 2), the convergence is much
faster, but still depending on the speci�c value of f . Pre-
cise results for various values of f (see Fig. 2) where ob-
tained owing to determination of analytical formulae for
lattice density of states in the presence of synthetic mag-
netic �elds. Some of them have never been presented
before (see Fig. 3).

4. Conclusions

The physics of strongly correlated bosonic systems is
the competition between two tendencies of the bosons to
spread out as a wave and to localize as a particle com-
bined with a frustration caused by synthetic magnetic
�eld. We calculated the phase diagram using the quan-
tum rotor approach with exactly evaluated density of
states for two-dimensional layered lattices with rational
magnetic �ux/rotation frustration parameter f = p/q for
a number of values f = p/q. By calculating analytically
the density of states for several values of the magnetic
�eld we were able to accurately predict the evolution of
the system towards the Mott phase. In systems that are
in the global coherent state at f = 0, but with the ratio
t/U close to the critical value (t/U)crit, a rotation can
be used to drive the condensates into the MI. Note that
the dependence of the xf/x0 from frustration parameter
f is non-monotonical. The e�ect is reduced when more
layers are being added, i.e. during the two- to quasi three-
dimensional geometry crossover. Furthermore, we have
established a correspondence between anisotropic in�nite
(quasi three-dimensional) and isotropic �nite (slab geom-
etry) systems that share exactly the same critical values,
which can be an important clue for choosing experimen-
tal setups that are less demanding, but still leading to the
identical results. Finally, we have shown that the prop-
erties of the ideal Bose gas in three-dimensional optical
lattice can be closely mimicked by �nite (slab) systems,
when the number of two-dimensional layers is larger than
ten or even less, when the layers are weakly coupled.
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