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Spin Resistivity in Magnetic Materials
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We show in this paper recent results on the spin resistivity in magnetically ordered materials obtained
by Monte Carlo simulations. We discuss its behavior as a function of temperature in various types of crystal:
ferromagnetic, antiferromagnetic, and frustrated spin systems. In the model used for simulations, we take into
account the interaction between itinerant spins and that between lattice spins and itinerant spins. We also include
a chemical potential term, as well as an electric �eld. We study in particular the behavior of the spin resistivity
at and near the magnetic phase transition where the e�ect of the magnetic ordering is strongest. In ferromagnetic
crystals, the spin resistivity shows a sharp peak very similar to the magnetic susceptibility. This can be understood
if one relates the spin resistivity to the spin�spin correlation as suggested in a number of theories. The dependence
of the shape of the peak on physical parameters such as carrier concentration, magnetic �eld strength, relaxation
time etc. is discussed. In antiferromagnets, the peak is not so pronounced and in some cases it is absent. Its direct
relationship to the spin�spin correlation is not obvious. As for frustrated spin systems with strong �rst-order
transition, the spin resistivity shows a discontinuity at the phase transition. To show the e�ciency of the simulation
method, we compare our results with recent experimental data performed on semiconducting MnTe of NiAs struc-
ture. We observe a very good agreement with experiments on the spin resistivity in the whole range of temperature.

PACS: 75.76.+j, 05.60.Cd

1. Introduction

The study of the behavior of the resistivity is one of the
fundamental tasks in materials science. This is because
the transport properties occupy the �rst place in elec-
tronic devices and applications. The resistivity has been
studied since the discovery of the electron a century ago
by the simple Drude theory using the classical free parti-
cle model with collisions due to atoms in the crystal. The
following relation is established between the conductivity
σ and the electronic parameters e (charge) andm (mass):

σ =
ne2τ

m
, (1)

where τ is the electron relaxation time, namely the av-
erage time between two successive collisions. In more
sophisticated treatments of the resistivity where various
interactions are taken into account, this relation is still
valid provided two modi�cations: (i) the electron mass
is replaced by its e�ective mass which includes various
e�ects due to interactions with its environment, (ii) the
relaxation time τ is not a constant but dependent on col-
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lision mechanisms. The �rst modi�cation is very impor-
tant, the electron can have a �heavy� or �light� e�ective
mass which modi�es its mobility in crystals. The second
modi�cation has a strong impact on the temperature de-
pendence of the resistivity: τ depends on some power
of the electron energy, this power depends on the di�u-
sion mechanisms such as collisions with charged impu-
rities, neutral impurities, magnetic impurities, phonons,
magnons, etc. As a consequence, the relaxation time av-
eraged over energy, ⟨τ⟩, depends di�erently on T accord-
ing to the nature of the collision source. The properties
of the total resistivity stem thus from di�erent kinds of
di�usion processes. Each contribution has in general a
di�erent temperature dependence.

Let us summarize the most important contributions to
the total resistivity ρt(T ) at low temperature (T ) in the
following expression:

ρt(T ) = ρ0 +A1T
2 +A2T

5 +A3 ln
µ

T
, (2)

where A1, A2 and A3 are constants. The �rst term is
T -independent, the second term proportional to T 2 rep-
resents the scattering of itinerant spins at low T by lattice
spin waves. Let us note that the resistivity caused by a
Fermi liquid is also proportional to T 2. The T 5 term
corresponds to low-T resistivity in metals. This is due to
the scattering of itinerant electrons by phonons. Let us
note that at high T , metals show a linear-T dependence.
The ln term is the resistivity due to the quantum Kondo
e�ect caused by a magnetic impurity at very low T .

(985)



986 H.T. Diep, Y. Magnin, Danh-Tai Hoang

We are interested here in the spin resistivity ρ of mag-
netic materials. This subject has been investigated in-
tensively both experimentally and theoretically for more
than �ve decades. The rapid development of the �eld is
due mainly to many applications in particular in spin-
tronics.
Experiments have been performed in many mag-

netic materials including metals, semiconductors and
superconductors. One interesting aspect of mag-
netic materials is the existence of a magnetic phase
transition from a magnetically ordered phase to the
paramagnetic (disordered) state. Very recent experi-
ments such as those performed on the following com-
pounds show di�erent forms of anomaly of the mag-
netic resistivity at the magnetic phase transition tem-
perature: ferromagnetic SrRuO3 thin �lms [1], Ru-
-doped induced ferromagnetic La0.4Ca0.6MnO3 [2], an-
tiferromagnetic ϵ-(Mn1−xFex)3.25Ge [3], semiconduct-
ing Pr0.7Ca0.3MnO3 thin �lms [4], superconducting
BaFe2As2 single crystals [5], and La1−xSrxMnO3 [6]. De-
pending on the material, ρ can show a sharp peak at the
magnetic transition temperature TC [7] or just only a
change of its slope, or an in�exion point. The latter case
gives rise to a peak of the di�erential resistivity dρ/dT
[8, 9].
As for theories, the T 2 magnetic contribution in Eq. (2)

has been obtained from the magnon scattering by Ka-
suya [10]. However, at high T in particular in the re-
gion of the phase transition, much less has been known.
de Gennes and Friedel [11] proposed this idea that the
magnetic resistivity results from the spin�spin correla-
tion so it should behave as the magnetic susceptibility,
thus it should diverge at TC. Fisher and Langer [12], and
Kataoka [13] have suggested that the range of spin�spin
correlation changes the shape of ρ near the phase transi-
tion. The resistivity due to magnetic impurities has been
calculated by Zarand et al. [14] as a function of the An-
derson localization length. This parameter expresses in
fact a kind of the correlation sphere induced around each
impurity. Their result shows that the resistivity peak de-
pends on this parameter, in agreement with the spin�spin
correlation idea.
The absence of Monte Carlo (MC) simulation in the

literature on the spin transport has motivated our recent
works: we have studied the spin current in ferromagnetic
[15�17] and antiferromagnetic [18�21] materials by MC
simulations. The behavior of ρ as a function of T has
been shown to be in agreement with main experimental
features and theoretical investigations mentioned above.
In this paper, we give a review of these works, outline

the most important aspects and results. We consider in
some details the case of MnTe where our simulation is in
excellent agreement with experiments.
In Sect. 2, we show our basic model and describe our

MC method. Results are shown and discussed in Sect. 3.
The case of MnTe is considered in Sect. 3.3. Concluding
remarks are given in Sect. 4.

2. Model and Method

2.1. Model

The model used in our MC simulation is very general.
The itinerant spins move in a crystal whose lattice sites
are occupied by localized spins. The itinerant spins and
the localized spins may be of Ising, XY or Heisenberg
models. Their interaction is usually limited to nearest
neighbors (NN) but this assumption is not necessary. It
can be ferromagnetic or antiferromagnetic.
Let us note that the purpose of this paper is to study

the e�ect of the magnetic transition on ρ. This transition
occurs at a high temperature where it is known that the
quantum nature of itinerant electron spins does not make
signi�cant additional e�ects with respect to the classical
spin model. Therefore, to simplify the task, we consider
here the classical spin model.
2.1.1. Interactions
We consider a crystal of a given lattice structure where

each lattice site is occupied by a spin. The interaction
between the lattice spins is given by the following Hamil-
tonian:

Hl = −
∑
(i,j)

Ji,jSi · Sj , (3)

where Si is the spin localized at lattice site i of the Ising,
XY or Heisenberg model, Ji,j � the exchange integral
between the spin pair Si and Sj which is not limited to
the interaction between nearest-neighbors (NN). Here-
after, except otherwise stated, we take Ji,j = J for NN
spin pairs, for simplicity. J > 0 (< 0) denotes ferromag-
netic (antiferromagnetic) interaction. The system size is
Lx ×Ly ×Lz where Li (i = x, y, z) is the number of lat-
tice cells in the i direction. Periodic boundary conditions
(PBC) are used in all directions.
We de�ne the interaction between itinerant spins and

localized lattice spins as follows:

Hr = −
∑
i,j

Ii,jσi · Sj , (4)

where σi is the spin of the i-th itinerant electron and Ii,j
denotes the interaction which depends on the distance
between electron i and spin Sj at lattice site j. For sim-
plicity, we suppose the following interaction expression:

Ii,j = I0 e
−αrij , (5)

where rij = |ri − rj |, I0 and α are constants. We use a
cut-o� distance D1 for the above interaction. In the same
way, interaction between itinerant electrons is de�ned by

Hm = −
∑
i,j

Ki,jσi · σj , (6)

Ki,j = K0 e
−βrij , (7)

with Ki,j being the interaction between electrons i and j,
limited in a sphere of radius D2. The choice of the con-
stants K0 and β will be discussed below.
Let us note that the choice of an exponential law does

not a�ect the general feature of our results presented in
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this paper because the short cut-o� distance used here
limits the interaction to a small number of neighbors,
typically to next nearest neighbors (NNN), so the choice
of another law such as a power law, or even discrete in-
teraction values, for such a small cut-o� will not make a
qualitative di�erence in the results.
Itinerant electrons move under an electric �eld applied

along the x axis. The PBC ensure that the electrons
who leave the system at one end are to be reinserted at
the other end. These boundary conditions are used in or-
der to conserve the average density of itinerant electrons.
One has

HE = −eϵ · ℓ, (8)

where e is the electronic charge, ϵ � an applied electric
�eld and ℓ � a displacement vector of an electron.
Since the interaction between itinerant electron spins

is attractive, we need to add a kind of �chemical poten-
tial� in order to avoid a possible collapse of electrons into
some points in the crystal and to ensure a homogeneous
spatial distribution of electrons during the simulation.
The chemical potential term is given by

Hc = D[n(r)− n0], (9)

where n(r) is the concentration of itinerant spins in the
sphere of D2 radius, centered at r, n0 � the average
concentration, and D � a constant parameter.

2.1.2. Choice of parameters and units

As mentioned earlier, our model is very general. Sev-
eral kinds of materials such as metals, semiconductors,
insulating magnetic materials etc. can be studied with
this model, provided an appropriate choice of the pa-
rameters. For example, non-magnetic metals correspond
to Ii,j = Ki,j = 0 (free conduction electrons). Magnetic
semiconductors correspond to the choice of parameters
K0 and I0 so as the energy of an itinerant electron due
to the interactionHr should be much lower than that due
to Hm, namely itinerant electrons are more or less bound
to localized atoms. Let us note that Hm depends on the
concentration of itinerant spins: for example the dilute
case yields a small Hm. We make simulations for typical
values of parameters which correspond to semiconduc-
tors. The choice of the parameters has been made after
numerous test runs. We describe the principal require-
ments which guide the choice: (i) we choose the interac-
tion between lattice spins as unity, i.e. |J | = 1, (ii) we
choose interaction between an itinerant and its surround-
ing lattice spins so as its energy Ei in the low T region
is the same order of magnitude with that between lattice
spins. To simplify, we take α = 1. This case corresponds
to a semiconductor, as mentioned earlier, (iii) interaction
between itinerant spins is chosen so that this contribution
to the itinerant spin energy is smaller than Ei in order
to highlight the e�ect of the lattice ordering on the spin
current. To simplify, we take β = 1, (iv) the choice of D
is made in such a way to avoid the formation of clusters
of itinerant spins (agglomeration) due to their attractive
interaction [Eq. (7)], (v) the electric �eld is chosen not so

strong in order to avoid its dominant e�ect that would
mask the e�ects of thermal �uctuations and of the mag-
netic ordering, (vi) the density of the itinerant spins is
chosen in a way that the contribution of interactions be-
tween themselves is much weaker than Ei, as mentioned
above in the case of semiconductors.
Within the above requirements, a variation of each pa-

rameter does not change qualitatively the results shown
below. Only the variation of D1 in some antiferromag-
nets does change the results (see Ref. [20]).
The energy is measured in the unit of |J |. The tem-

perature is expressed in the unit of |J |/kB. The distance
(D1 and D2) is in the unit of the lattice constant a. Real
units will be used in Sect. 3.3 for comparison with exper-
iments.

2.2. Simulation method

Using the Metropolis algorithm, we �rst equilibrate the
lattice at a given temperature T without itinerant elec-
trons. When equilibrium is reached, we randomly add
N0 polarized itinerant spins into the lattice. Each itin-
erant electron interacts with lattice spins in a sphere of
radius D1 centered at its position, and with other itin-
erant electrons in a sphere of radius D2. We next equi-
librate the itinerant spins using the following updating.
We calculate the energy Eold of an itinerant electron tak-
ing into account all interactions described above. Then
we perform a trial move of length ℓ taken in an arbitrary
direction with random modulus in the interval [R1, R2]
where R1 = 0 and R2 = a (NN distance), a being the
lattice constant. Let us note that the move is rejected
if the electron falls in a sphere of radius r0 centered at
a lattice spin or at another itinerant electron. This ex-
cluded space emulates the Pauli exclusion. We calculate
the new energy Enew and use the Metropolis algorithm to
accept or reject the electron displacement. We choose an-
other itinerant electron and begin again this procedure.
When all itinerant electrons are considered, we say that
we have made a MC sweeping, or one MC step/spin. We
have to repeat a large number of MC steps/spin to reach
a stationary transport regime. We then perform the aver-
aging to determine physical properties such as magnetic
resistivity, electron velocity, energy etc. as functions of
temperature. We de�ne the dimensionless spin resistiv-
ity ρ as

ρ =
1

ne
, (10)

where ne is the number of itinerant electron spins cross-
ing a unit slice perpendicular to the x direction per unit
of time. An example with real units is shown in Sect. 3.3.
In order to have su�cient statistical averages on mi-

croscopic states of both the lattice spins and the itin-
erant spins, we use what we call �multi-step averaging
procedure�: after averaging the resistivity over N1 steps
for �each� lattice spin con�guration, we thermalize again
the lattice with N2 steps in order to take another dis-
connected lattice con�guration. Then we take back the
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averaging of the resistivity for N1 steps for the new lat-
tice con�guration. We repeat this cycle for N3 times,
usually several hundreds of thousands times. The total
MC steps for averaging is about 4× 105 steps per spin in
our simulations. This procedure reduces strongly ther-
mal �uctuations observed in our previous work [16].
Of course, the larger N2 and N3 are, the better the

statistics become. The question is what is the correct
value of N1 for averaging with one lattice spin con�gu-
ration at a given T? This question is important because
this is related to the relaxation time τL of the lattice spins
compared to that of the itinerant spins, τI. The two ex-
treme cases are (i) τL ≃ τI, one should take N1 = 1,
namely the lattice spin con�guration should change with
each move of itinerant spins, (ii) τL ≫ τI, in this case,
itinerant spins can travel in the same lattice con�guration
for many times during the averaging.
In order to choose a right value of N1, we consider the

following temperature dependence of τL in non-frustrated
spin systems. The relaxation time is expressed in this
case as [22, 23]:

τL =
A

|1− T/TC|zν
, (11)

where A is a constant, ν � the correlation critical ex-
ponent, and z � the dynamic exponent which depend
on the spin model and space dimension. For 3D Ising
model, ν = 0.638 and z = 2.02. From this expression, we
see that as T tends to TC, τL diverges. In the critical re-
gion around TC the system encounters thus the so-called
�critical slowing down�: the spin relaxation is extremely
long due to the divergence of the spin�spin correlation.
When we take into account the temperature dependence
of τL, the shape of the resistivity is modi�ed strongly at
TC where τL is very long, and in the paramagnetic phase
where the relaxation time is very short due to rapid ther-
mal �uctuations. On the other hand, at low T , τL does
not modify ρ because in the ordered phase the spin land-
scape from one microscopic state to another does not
change signi�cantly to a�ect the motion of the itinerant
spin (see discussion in Ref. [21]).

3. Results

3.1. Ferromagnets and antiferromagnets

In ferromagnets, experimental data mentioned above
show a peak at TC. The peak is related to the critical
slowing-down where the relaxation time diverges. Di-
rect MC simulations in the case of the Ising spin give a
pronounced peak at TC as shown in Fig. 1 in agreement
with experiments. Let us note that ρ increases at low T .
The reason for this is multiple: it can stem from the
freezing or crystallization of itinerant spins at low T or
just from the smallness of the number of conduction elec-
trons in such a low-T region. The shape of ρ depends on
many factors: lattice structure, various interactions en-
countered by itinerant spins, electron concentration, re-
laxation time, spin model, magnetic-�eld amplitude etc.

For example, a decrease in the interaction between itin-
erant spins K0 will reduce the increase of ρ as T → 0,
an applied magnetic �eld will decrease the peak height,
the larger carrier concentration will reduce ρ in particu-
lar at TC. All of these have been discussed in Ref. [19].
We note a strong e�ect of the temperature dependence
of τL on ρ for T ≥ TC. This is very important because
τL depends intrinsically on the material via ν and z.

Fig. 1. BCC ferromagnetic and antiferromagnetic
�lms: resistivity ρ with temperature-dependent re-
laxation for ferro- (black circles) and antiferromagnet
(white circles) in arbitrary unit versus temperature T ,
in zero magnetic �eld, with electric �eld ϵ = 1, I0 = 2,
K0 = 0.5, A = 1.

For a quantitative comparison with experiments for a
given material, it is necessary to take into account the
speci�c parameters of that material. This is what we do
in Sect. 3.3.
In antiferromagnets much less is known because there

have been very few theoretical investigations which have
been carried out. Haas [24] has shown that while in fer-
romagnets the resistivity ρ shows a sharp peak at the
magnetic transition of the lattice spins, in antiferromag-
nets there is no such a peak. We found that the peak
exists in antiferromagnets but it is less pronounced as
seen in Fig. 1. The alternate change of sign of the spin�
spin correlation with distance may have something to do
with the absence of a sharp peak. We have tested for
example the e�ect of the cut-o� distance D1 [20]: when
D1 increases, it will include successively up-spin shells
and down-spin shells in the sphere of radius D1. As a
consequence, the di�erence between the numbers of up
and down spins in the sphere oscillates with varying D1,
making an oscillatory behavior of ρ at small D1, unlike
in ferromagnets. It is interesting to note that in the pres-
ence of an itinerant spin, the ferromagnet and its antifer-
romagnet counterpart are no more invariant by the local
Mattis transformation (Jij → −Jij , Sj → −Sj).

3.2. Frustrated systems

We consider the simple cubic lattice shown in Fig. 2.
The Hamiltonian is given by

H = −J1
∑
(i,j)

Si · Sj − J2
∑
(i,m)

Si · Sm, (12)

where Si is the Ising spin at the lattice site i,
∑

(i,j) is
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made over the NN spin pairs with interaction J1, while∑
(i,m) is performed over the NNN pairs with interac-

tion J2. We are interested in the frustrated regime.
Therefore, hereafter we suppose that J1 = −J (J > 0,
antiferromagnetic interaction) and J2 = −ηJ where η
is a positive parameter. The ground state (GS) of this
system is easy to obtain either by minimizing the en-
ergy, or by comparing the energies of di�erent spin con-
�gurations, or just a numerical minimizing by a steepest
descent method [25]. We obtain the antiferromagnetic
con�guration shown by the upper �gure of Fig. 3 for
|J2| < 0.25|J1|, or the con�guration shown in the lower
�gure for |J2| > 0.25|J1|. Let us note that this latter
con�guration is 3-fold degenerate by choosing the paral-
lel NN spins on x, y, or z axis. With the permutation of
black and white spins, the total degeneracy is thus 6.

Fig. 2. Simple cubic lattice with nearest and next-
-nearest neighbor interactions, J1 and J2, indicated.

Fig. 3. Simple cubic lattice. Up-spins: white cir-
cles, down-spins: black circles. Upper: ground state
when |J2| < 0.25|J1|, lower: ground state when |J2| >
0.25|J1|.

The phase transition in the case of the Heisenberg
model in the frustrated region (|J2| > 0.25|J1|) has been
found to be of �rst order [26]. The system is very un-
stable due to its large degeneracy. We �nd that the case
of the Ising spin shows an even stronger �rst-order tran-
sition [27]. It is interesting to note that the resistivity
of itinerant spins in systems with a �rst-order transition
undergoes a discontinuity at TC just as the system en-
ergy and the order parameter. We show ρ in Fig. 4 for
several cut-o� distance D1. One observes here that ρ
can jump or fall at the transition depending on the inter-
action range D1. The resistivity discontinuity has been
con�rmed in another system with �rst-order transition,
the frustrated fcc antiferromagnet [20]. This seems to be
a general rule.

Fig. 4. Spin resistivity versus T for |J2| = 0.26|J1| for
several values of D1: from up to down D1 = 0.7a,
0.8a, 0.94a, a, 1.2a. Other parameters are Lx = Ly =
20, Lz = 6, I0 = K0 = 0.5, D2 = a, D = 1, ϵ = 1.

3.3. The case of MnTe

The pure MnTe has either the zinc-blende structure
[28] or the hexagonal NiAs one shown in Fig. 5. We
con�ne ourselves in the latter case where the Néel tem-
perature is TN = 310 K [29]. Hexagonal MnTe is a cross-
-road semiconductor with a big gap (1.27 eV) and a room-
-temperature carrier concentration of n = 4.3×1017 cm−3

[30, 31]. Without doping, MnTe is non-degenerate. The
behavior of ρ in MnTe as a function of T has been ex-
perimentally shown [32�36]. The hexagonal is composed
of ferromagnetic xy hexagonal planes antiferromagneti-
cally stacked in the c direction. The NN distance in the
c direction is c/2 ≈ 3.36 Å shorter than the in-plane NN
distance which is a = 4.158 Å. Neutron scattering ex-
periments show that the main exchange interactions be-
tween Mn spins in MnTe are (i) interaction between NN
along the c axis with the value J1/kB = −21.5 ± 0.3 K,
(ii) ferromagnetic exchange J2/kB ≈ 0.67 ± 0.05 K be-
tween in-plane neighboring Mn (they are next NN by
distance), (iii) third NN antiferromagnetic interaction
J3/kB ≈ −2.87 ± 0.04 K. The spins are lying in the
xy planes perpendicular to the c direction with a small
in-plane easy-axis anisotropy D [29]. We note that
the values of the exchange integrals given above have
been deduced from experimental data by �tting with
a formula obtained from a free spin-wave theory [29].
Other �ttings with mean-�eld theories give slightly dif-
ferent values: J1/kB = −16.7 K, J2/kB = 2.55 K and
J3/kB = −0.28 K [30].
The lattice Hamiltonian is given by

H = −J1
∑
(i,j)

Si · Sj − J2
∑
(i,m)

Si · Sm

− J3
∑
(i,k)

Si · Sk −Da

∑
i

(Sx
i )

2, (13)

where Si is the Heisenberg spin at the lattice site i,
∑

(i,j)

is made over the NN spin pairs Si and Sj with interac-
tion J1, while

∑
(i,m) and

∑
(i,k) are made over the NNN

and third NN neighbor pairs with interactions J2 and J3,
respectively. Da > 0 is an anisotropy constant which
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Fig. 5. Structure of MnTe of NiAs type is shown. An-
tiparallel spins are shown by black and white circles.
NN interaction is marked by J1, next NN interaction
by J2, and third NN one by J3.

favors the in-plane x easy-axis spin con�guration. The
Mn spin is experimentally known to be of the Heisenberg
model with magnitude S = 5/2 [29].
The interaction between an itinerant spin and sur-

rounding Mn spins in semiconducting MnTe is written
as

Hi = −
∑
n

I(r −Rn)σ · Sn, (14)

where I(r −Rn) > 0 is a ferromagnetic exchange inter-
action between itinerant spin σ at r and Mn spin Sn

at lattice site Rn. The sum on lattice spins Sn is lim-
ited at cut-o� distance D1 = a. We use here the Ising
model for the electron spin. In doing so, we neglect the
quantum e�ects which are of course important at very
low temperature but not in the transition region at room
temperature where we focus our attention. We suppose
the following distance dependence of I(r −Rn):

I(r −Rn) = I0 exp(−α(r −Rn)), (15)

where I0 and α are constants. We choose α = 1 for con-
venience. The choice of I0 should be made so that the
interaction Hi yields an energy much smaller than the
lattice energy due to H (see discussion on the choice of
variables given above). Let us note that the cut-o� dis-
tance is rather short so that the obtained results shown
below still keep a general character which does not de-
pend on the choice of exponential form. Since in MnTe
the carrier concentration is n = 4.3 × 1017 cm−3, very
low with respect to the concentration of its surrounding
lattice spins ≈ 1022 cm−3, we do not take into account
the interaction between itinerant spins.
As mentioned before, the values of the exchange inter-

actions deduced from experimental data depend on the
model Hamiltonian, in particular the spin model, as well
as the approximations. Furthermore, in semiconductors,
the carrier concentration is a function of T . In our model,
there is however no interaction between itinerant spins.
Therefore, the number of itinerant spins used in the simu-
lation is important only for statistical average: the larger
the number of itinerant spins the better the statistical av-
erage. The current obtained is proportional to the num-

Fig. 6. Spin resistivity ρ versus temperature T . Black
circles are from Monte Carlo simulation, white circles
are experimental data taken from He et al. [36]. The
parameters used in the simulation are J1 = −21.5 K,
J2 = 2.55 K, J3 = −9 K, I0 = 2 K, Da = 0.12 K,
D1 = a = 4.148 Å, ϵ = 2 × 105 V/m, L = 30a (lattice
size L3).

ber of itinerant spins but there are no extra physical ef-
fects. Using the exchange integrals slightly modi�ed with
respect to the ones given above, we have calculated ρ of
the hexagonal MnTe. The result of ρ is shown in Fig. 6.
Let us note that with J3 slightly larger in magnitude than
the value deduced from experiments, we �nd TN = 310 K
in excellent agreement with experiments. Furthermore,
we observe that ρ shows a pronounced peak and coincides
with the experimental data. The values we used to ob-
tain that agreement are A = 1 and the Heisenberg critical
exponents ν = 0.707, z = 1.97 [23]. In the temperature
regions below T < 140 K and above TN the MC result
is also in excellent agreement with experiment, unlike in
our previous work [18] using the Boltzmann equation.
Using the value of ρ, we obtain the relaxation time of

itinerant spin equal to τI ≈ 0.1 ps, and the mean free
path equal to l̄ ≈ 20 Å, at the critical temperature.

4. Conclusion

We have shown in this paper how MC simulations
can be used to produce properties of spin transport in
magnetic materials. The method is very general, it can
be easily applied to a wide range of materials from fer-
romagnets to antiferromagnets of di�erent lattices and
spin models. The results of the spin resistivity ρ as a
function of temperature under di�erent situations can be
obtained and compared to experiments. We were con-
centrated in the magnetic phase transition region where
theories failed to predict correct behaviors of ρ. This is
due to the fact that the magnetic resistivity is intimately
related to the spin�spin correlation which is very di�er-
ent from one material to another. This correlation, as
we know in the domain of phase transition and critical
phenomena, governs the nature of the transition: phase
transitions of second order of di�erent universality classes
and phase transitions of �rst-order. Needless to say, the
nature of the phase transition a�ects the behavior of ρ as
seen above: di�erent shapes of ρ and discontinuity at TC,
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etc. We have, for a good demonstration of the e�ciency
of our method, studied the case of MnTe where experi-
mental data are recently available for the whole temper-
ature range. Our result is in excellent agreement with
experiments: it reproduces the correct Néel temperature
as well as the shape of the peak at the phase transition.

References

[1] J. Xia, W. Siemons, G. Koster, M.R. Beasley, A. Ka-
pitulnik, Phys. Rev. B 79, R140407 (2009).

[2] C.L. Lu, X. Chen, S. Dong, K.F. Wang, H.L. Cai,
J.-M. Liu, D. Li, Z.D. Zhang, Phys. Rev. B 79,
245105 (2009).

[3] J. Du, D. Li, Y.B. Li, N.K. Sun, J. Li, Z.D. Zhang,
Phys. Rev. B 76, 094401 (2007).

[4] Y.Q. Zhang, Z.D. Zhang, J. Aarts, Phys. Rev. B 79,
224422 (2009).

[5] X.F. Wang, T. Wu, G. Wu, H. Chen, Y.L. Xie,
J.J. Ying, Y.J. Yan, R.H. Liu, X.H. Chen, Phys. Rev.
Lett. 102, 117005 (2009).

[6] T.S. Santos, S.J. May, J.L. Robertson, A. Bhat-
tacharya, Phys. Rev. B 80, 155114 (2009).

[7] F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, Phys.
Rev. B 57, R2037 (1998).

[8] A.E. Petrova, E.D. Bauer, V. Krasnorussky,
S.M. Stishov, Phys. Rev. B 74, 092401 (2006).

[9] F.C. Schwerer, L.J. Cuddy, Phys. Rev. 2, 1575 (1970).
[10] T. Kasuya, Prog. Theor. Phys. 16, 58 (1956).
[11] P.-G. de Gennes, J. Friedel, J. Phys. Chem. Solids 4,

71 (1958).
[12] M.E. Fisher, J.S. Langer, Phys. Rev. Lett. 20, 665

(1968).
[13] M. Kataoka, Phys. Rev. B 63, 134435 (2001).
[14] G. Zarand, C.P. Moca, B. Janko, Phys. Rev. Lett. 94,

247202 (2005).
[15] K. Akabli, H.T. Diep, S. Reynal, J. Phys., Condens.

Matter 19, 356204 (2007).
[16] K. Akabli, H.T. Diep, J. Appl. Phys. 103, 07F307

(2008).
[17] K. Akabli, H.T. Diep, Phys. Rev. B 77, 165433

(2008).

[18] K. Akabli, Y. Magnin, M. Oko, I. Harada, H.T. Diep,
Phys. Rev. B 84, 024428 (2011).

[19] Y. Magnin, K. Akabli, H.T. Diep, I. Harada, Comput.
Mater. Sci. 49, S204 (2010).

[20] Y. Magnin, K. Akabli, H.T. Diep, Phys. Rev. B 83,
144406 (2011).

[21] Y. Magnin, Danh-Tai Hoang, H.T. Diep, Mod. Phys.
Lett. B 25, 1029 (2011).

[22] P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49,
435 (1977).

[23] P. Peczak, D.P. Landau, J. Appl. Phys. 67, 5427
(1990).

[24] C. Haas, Phys. Rev. 168, 531 (1968).
[25] V. Thanh Ngo, H.T. Diep, Phys. Rev. B 75, 035412

(2007).
[26] C. Pinettes, H.T. Diep, J. Appl. Phys. 83, 6317

(1998).
[27] Danh-Tai Hoang, Y. Magnin, H.T. Diep, Mod. Phys.

Lett. B 25, 937 (2011).
[28] B. Hennion, W. Szuszkiewicz, E. Dynowska, E. Janik,

T. Wojtowicz, Phys. Rev. B 66, 224426 (2002).
[29] W. Szuszkiewicz, E. Dynowska, B. Witkowska,

B. Hennion, Phys. Rev. B 73, 104403 (2006).
[30] S.R. Mobasser, T.R. Hart, Proc. SPIE, Conf. Series

524, 137 (1985).
[31] J.W. Allen, G. Locovsky, J.C. Mikkelsen, Jr., Solid

State Commun. 24, 367 (1977).
[32] S. Chandra, L.K. Malhotra, S. Dhara, A.C. Rastogi,

Phys. Rev. B 54, 13694 (1996).
[33] Y.B. Li, Y.Q. Zhang, N.K. Sun, Q. Zhang, D. Li,

J. Li, Z.D. Zhang, Phys. Rev. B 72, 193308 (2005).
[34] S.S. Aplesnin, L.I. Ryabinkina, O.B. Romanova,

D.A. Balaev, O.F. Demidenko, K.I. Yanushkevich,
N.S. Miroshnichenko, Phys. Solid State 49, 2080
(2007); DOI: 10.1134/S106378340711011X.

[35] J.B.C. Efrem D'Sa, P.A. Bhobe, K.R. Priolkar,
A. Das, S.K. Paranjpe, R.B. Prabhu, P.R. Sarode,
J. Magn. Magn. Mater. 285, 267 (2005); arXiv:cond-
-mat/0408124v1 (2004).

[36] X. He, Y.Q. Zhang, Z.D. Zhang, J. Mater. Sci. Tech-
nol. 27, 64 (2011).


