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Strong-Coupling Description of the High-Temperature

Superconductivity in the Molecular Hydrogen
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The detailed study of the selected thermodynamic properties of the superconducting phase in the molecular
hydrogen under the pressure at 428 GPa has been presented. For the increasing value of the Coulomb pseudopo-
tential µ∗ ∈ ⟨0.08, 0.15⟩, the following results have been obtained: (i) the critical temperature decreases from
179 K to 141 K, (ii) the ratio R1 ≡ 2∆ (0) /kBTC di�ers noticeably from the BCS value: R1 ∈ ⟨4.71, 3.60⟩; (iii)
the electron e�ective mass is large and grows slightly together with the temperature ([m∗

e/me]max = 2.2 for T = TC).

PACS: 74.20.Fg, 74.25.Bt, 74.62.Fj

1. Introduction

At low temperature, hydrogen exhibits the nontrivial
structural behavior under the pressure p [1, 2]. Below
110 GPa the hexagonal-closed-packed lattice with freely
rotating molecules is stable (phase I). At higher pres-
sures, up to 150 GPa, the broken symmetry phase has
been observed (phase II). In the pressure range of 150�
350 GPa the so called phase III exists. The experimental
measurements have proved, that the all listed phases do
not demonstrate the metallic properties. In the pres-
sure range from ≈ 400 GPa to ≈ 500 GPa, the the-
oretical studies predict the existence of the molecular
metallic phase (the Cmca crystal structure) [3�5]. Above
≈ 500 GPa, the molecular metallic phase transforms to
the Cs-IV monatomic phase [3�6]. This phase is stable
at least up to 802 GPa [7]. For the extremely high value
of the pressure (2000 GPa) Maksimov and Savrasov have
proposed the simple fcc structure [8].
The molecular and monatomic metallic form of the hy-

drogen can be the superconductor with the high critical
temperature TC [9]. In particular, the calculated values
of the critical temperature have been presented in the
Table. We notice that TC has usually been obtained by
using the McMillan formula [14], which represents the
weak coupling limit of the more elaborate Eliashberg ap-
proach [15]. However, in the case of the metallic hydro-
gen the electron�phonon interaction is strong, hence the
McMillan expression is inappropriate.
For this reason, we have calculated the critical temper-

ature with the help of the Eliashberg equations. We have
considered the case p = 428 GPa (the value of p close to
the metallization pressure). Additionally, we have stud-
ied precisely the properties of the order parameter and
the electron e�ective mass.
In the paper we have taken into consideration the

Eliashberg set in the mixed representation [16]. This
approach allows one to obtain the stable solutions on
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the real axis, since the analysis does not involve any
principal-part integrals with singular integrands.

TABLE

The critical temperature for the selected values of
the pressure; µ∗ denotes the Coulomb pseudopo-
tential.

p [GPa] TC [K] µ∗ Structure Ref.

400 130�230a 0.1 sh, dsh, 9Rb [10]

414 84 � Cmca [11]

428 162a 0.1 Cmca [12]

450 242c � Cmca [11]

480 284 (266)a 0.1 (0.13) Cs-IV [7]

539 291 (272)a 0.1 (0.13) Cs-IV [7]

608 291 (271)a 0.1 (0.13) Cs-IV [7]

802 282 (260)a 0.1 (0.13) Cs-IV [7]

2000 ≈ 600 � fcc [8]

2000 (631, 413)d (0.1, 0.5) fcc [13]
aThe McMillan formula [14]. bProbably unstable.
cThe three-band model. dThe exact solution of
the Eliashberg equations [15].

2. The Eliashberg equations

The Eliashberg equations in the mixed representation
have been written in the following form [16]:
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The Eliashberg set gives the following solutions on the
real axis: the order parameter function ϕ (ω) and the
wave function renormalization factor Z (ω). The or-
der parameter is de�ned by the expression: ∆ (ω) ≡
ϕ (ω) /Z (ω). On the other hand, the imaginary axis func-
tions (ϕm ≡ ϕ (iωm) and Zm ≡ Z (iωm)) should be cal-
culated by using the equations:
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where the Matsubara energy is given by: ωm ≡
(π/β) (2m− 1) and β ≡ (kBT )

−1
; kB is the Boltzmann

constant.
The pairing kernel for the electron�phonon interaction

has the form:

λ (z) ≡ 2

∫ Ωmax

0

dΩ
Ω

Ω2 − z2
α2F (Ω) . (6)

The Eliashberg function for the molecular hydrogen
(α2F (Ω)) has been calculated in [12]. The maximum
phonon energy (Ωmax) is equal to 508.1 meV.
The function µ∗ (ωm) ≡ µ∗θ (ωc − |ωm|) describes the

Coulomb repulsion between electrons; µ∗ denotes the
Coulomb pseudopotential, θ is the Heaviside unit func-
tion and ωc represents the energy cut-o� (ωc = 3Ωmax).
For the molecular hydrogen we assume: µ∗ ∈ ⟨0.08, 0.15⟩.
The symbols N (ω) and f (ω) denote the Bose and

Fermi functions respectively.
The Eliashberg equations have been solved for 1601

Matsubara frequencies (M = 800) by using the numerical
method presented in the papers [17]. In the considered
case, the functions ϕ (ω) and Z (ω) are stable for T ≥
11.6 K.

3. Results

In Fig. 1 we have presented the dependence of the crit-
ical temperature on the value of the Coulomb pseudopo-

tential. The exact numerical solutions of the Eliashberg
equations have been represented by the black circles. The
dashed and dotted lines represent the calculation of the
critical temperature by using Allen�Dynes formula [18]
and the McMillan expression respectively. It is easy to
see, that McMillan formula lowers much TC in the whole
range of the Coulomb pseudopotential's values, whereas
the Allen�Dynes expression predicts correctly the criti-
cal temperature only for very low values of µ∗. For this
reason we have modi�ed the classical Allen�Dynes ex-
pression in order to obtain the analytical formula, which
reproduces the Eliashberg results exactly (the solid line
in Fig. 1). In particular, we have �tted the selected

Fig. 1. The critical temperature as a function of the
Coulomb pseudopotential.

Fig. 2. The real and imaginary part of the order pa-
rameter on the real axis for the selected temperatures.
The rescaled Eliashberg function is also plotted.

parameters in the Allen�Dynes expression (Λ1 and Λ2)
with the help of 250 numerical values of TC (µ∗). The
�nal result takes the form:

kBTC = f1f2
ωln
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Fig. 3. (a) The order parameter on the complex plane
for the selected values of the temperature. The lines
with symbols represent the solutions for ω ∈ ⟨0,Ωmax⟩,
whereas the regular lines correspond to the solutions for
ω ∈

(
Ωmax, ωc⟩. (b) The temperature dependence of the

order parameter. In the both cases we assume µ∗ = 0.1.
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(√
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2

. (8)

Additionally:

Λ1 ≡ 3.64− 12.92µ∗ and

Λ2 ≡
√
ω2

ωln
(1.39− 59.74µ∗) . (9)

The parameters: λ,
√
ω2 and ωln are equal to: 1.2 meV,

207.5 meV and 141.9 meV, respectively.

In Fig. 2 we have shown the order parameter on the
real axis for the selected temperatures, and µ∗ = 0.1; the
Eliashberg function is also plotted. On the basis of the
presented results one can state, that both the real and
imaginary part of the function ∆ (ω) is plainly correlated
with the shape of the electron�phonon interaction. This
e�ect is especially clearly visible for the low values of the
temperature. The full form of the order parameter on the
complex plane has been presented in Fig. 3a. We have
stated, that the ∆ (ω) values form the distorted spirals
which shrink with the growth of the temperature. Basing
on Fig. 3a it is also possible to notice, that the e�ective
electron�electron interaction is attractive (Re(∆ (ω)) >
0) in the range of the frequencies from zero to ≈ 0.9Ωmax.

Taking into consideration the equation: ∆ (T ) =
Re (∆ (ω = ∆ (T ))) we have calculated the dependence
of the order parameter on the temperature (see Fig. 3b).

Next, the value of the ratio R1 ≡ 2∆(0)
kBTC

can be ob-

tained, where ∆ (0) denotes the value of the order pa-
rameter close to the zero temperature and ∆ (0) ≃
∆ (T = 11.6K). In Fig. 4 we have presented the possi-
ble values of R1 for µ∗ ∈ ⟨0.08, 0.15⟩. It is easy to see
that in the whole range of the considered values of the
Coulomb pseudopotential, the ratio R1 di�ers essentially

from the BCS prediction; [R1]BCS = 3.53 [19]. Addition-
ally, in the inset in Fig. 4 we have shown the dependence
of ∆ (0) on µ∗.

Fig. 4. The ratio R1 as a function of the Coulomb
pseudopotential. The inset shows the open form of
∆ (0).

Fig. 5. The real and imaginary part of the wave func-
tion renormalization factor on the real axis for the se-
lected temperatures. The rescaled Eliashberg function
is also plotted.

The second solution of the Eliashberg equations on the
real axis has been plotted in Fig. 5 (µ∗ = 0.1). The
obtained results prove that the function Z (ω) also clearly
senses the structure of the electron�phonon interaction.
The shape of the wave function renormalization factor
on the complex plane has been presented in Fig. 6. We
see, that in contrast to the order parameter, the function
Z (ω) weakly depends on the temperature.
In the framework of the Eliashberg formalism, on

the basis of the wave function renormalization factor,
the temperature dependence of the electron e�ective
mass (m∗

e) can be calculated. In particular: m∗
e/me =

Re [Z (0)], where the symbolme denotes the bare electron
mass. The values of the ratio m∗

e/me have been pre-
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Fig. 6. The wave function renormalization factor on
the complex plane (µ∗ = 0.1). The lines with sym-
bols represent the solutions for ω ∈ ⟨0,Ωmax⟩, whereas
the regular lines correspond to the solutions for ω ∈(
Ωmax, ωc⟩. The inset shows the ratio m∗

e/me as a func-
tion of the temperature.

sented in the Fig's. 6 inset. According to the presented
data, it is easy to spot, that m∗

e is high in the full range
of the considered temperatures and [m∗

e/me]max = 2.2
for T = TC . We notice that at the critical tempera-
ture, the electron e�ective mass is independent of µ∗ and
[m∗

e/me]max = 1 + λ.

4. Summary

We have calculated the selected thermodynamic prop-
erties of the superconducting state in the molecular hy-
drogen (p = 428 GPa). The numerical analysis has been
conducted in the framework of the one-band Eliashberg
formalism for the wide range of the Coulomb pseudopo-
tential's values: µ∗ ∈ ⟨0.08, 0.15⟩. We have proved, that
the critical temperature is high even for large values of
µ∗ ([TC ]min = 141 K). Next, it has been shown, that the
superconducting phase is characterized by high value of
the dimensionless ratio R1, which di�ers from the BCS
result; R1 ∈ ⟨4.71, 3.60⟩. Finally, we have observed that
the electron�phonon interaction strongly enhances the ef-
fective electron mass for the temperatures from zero to
TC . In particular, the maximum of m∗

e is equal to 2.2me

for T = TC .
In the future we will analyze the superconducting state

in the molecular hydrogen in the framework of the three-
gap Eliashberg model. It will be done in order to discuss
the e�ect of the multi-band anisotropy [11].
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