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On the Imbalanced d-Wave Super�uids Within the Spin

Polarized Extended Hubbard Model: Weak Coupling Limit
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We investigate the super�uid properties of d-wave pairing symmetry within the Extended Hubbard Model
(EHM) in a magnetic �eld. We analyze the temperature and magnetic �eld dependencies of the order parameter.
We �nd that in the two-dimensional case, the spatially homogeneous spin polarized super�uidity (SC(P ̸= 0)) is
stable in the weak coupling limit, at T = 0, as opposed to the s-wave pairing symmetry case in 2D. We construct
the ground state phase diagrams both for �xed chemical potential and electron concentration. Furthermore, we
obtain the temperature vs. magnetic �eld and temperature vs. spin polarization phase diagrams.
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1. Introduction

In this paper, we brie�y discuss the super�uid proper-
ties of the Extended Hubbard Model (EHM) with spin
independent hopping integrals (t↑ = t↓), in a Zeeman
magnetic �eld (h). We take into account only the pure
d-wave pairing symmetry case. Our motivation to study
this kind of pairing symmetry is not only the interest in
high-temperature superconductivity, but also the possi-
bility of existence of new phases with non-trivial Cooper
pairing mechanism in imbalanced Fermi gases.
There has been much experimental [1] and theoreti-

cal [2�8] work on the possibilty of existence of the spa-
tially homogeneous spin-polarized super�uidity (Sarma
phase or breached pairing state (BP)) with one or two
Fermi surfaces (BP-I or BP-II, respectively) and a gap-
less spectrum for the majority spin species. The coexis-
tence of the super�uid and the normal component in the
isotropic state is characteristic for the BP phase. Accord-
ing to many investigations [6, 8], at T = 0, the Sarma
phase (or BP-II state) in the weak coupling limit is un-
stable for the s-wave pairing symmetry case.
The model Hamiltonian is the Extended Hubbard

model (EHM) [9] in a magnetic �eld with spin indepen-
dent hopping integrals:

Ĥ =
∑
i,j,σ

(tij − µδij)ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓

+
1

2

∑
i,j,σ,σ′

Wijn̂iσn̂jσ′ − h
∑
i

(n̂i↑ − n̂i↓), (1)

where: tij � nearest-neighbor hopping; σ =↑, ↓ � spin

index, n̂iσ = ĉ†iσ ĉiσ � particle number operator, U �
on-site interaction, Wij � intersite interaction, h � Zee-
man magnetic �eld, µ� chemical potential. The gap pa-
rameter is de�ned by: ∆k = 1

N

∑
q V

s
kq⟨ĉ−q↓ĉq↑⟩, where:

V s
kq = −U −Wγk−q.
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Applying the broken symmetry Hartree�Fock ap-
proximation, we obtain the grand canonical poten-
tial Ω and the free energy F . Using the free en-
ergy expression, one gets the equations for the gap:

∆k = 1
N

∑
q V

s
kq

∆q
2ωq

(1 − f(Eq↑) − f(Eq↓)), particle

number (which determines µ): n = n↑ + n↓, nσ =
1
N

∑
k⟨ĉ

†
kσ ĉkσ⟩ =

1
N

∑
k(|uk|2f(Ekσ) + |vk|2f(−Ek−σ)),

Fock parameter: p =
p↑+p↓

2 , pσ = 1
N

∑
k γk⟨ĉ

†
kσ ĉkσ⟩ =

1
N

∑
k γk(|uk|2f(Ekσ)+|vk|2f(−Ek−σ)) and spin magne-

tization: M = n↑−n↓, where: f(Ekσ) = 1/(exp(βEkσ)+

1), β = 1/kBT , Ek↓,↑ = ±UM
2 ± 1

2W (p↑−p↓)
γk
γ0

±h+ωk,

ωk =
√
((ϵk − µ̄)2 + |∆k|2, |vk|2 = 1

2

(
1− ϵk−µ̄

ωk

)
, |uk|2 =

1 − |vk|2, ϵk = −2tΘk, γk = 2Θk, Θk =
∑d

l=1 cos(klal)
(d = 2 for two-dimensional lattice), al = 1 in further
considerations, µ̄ = µ− n(U2 +Wγ0).
We take into account only the pure d-wave pairing

symmetry case. Then, W < 0, U = 0 and the equa-
tion for the order parameter takes the form:

4

|W |
=

1

N

∑
k

η2k
2ωk

(
1− f(Ek↑)− f(Ek↓)

)
, (2)

where: ηk = 2(cos kx − cos ky).
We also calculate the super�uid density ρs(T ), which

takes the form:

ρs(T ) = − t

N

∑
k

(
ϵk − µ̄

2ωk
cos kxXk

+t sin2 kxYk

)
, (3)

where:

Xk =
sinh(βωk)

cosh
(
β
(
h+ UM

2

))
+ cosh(βωk)

, (4)

(824)
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Yk = β
cosh

(
β
(
h+ UM

2

))
cosh(βωk) + 1(

cosh
(
β
(
h+ UM

2

))
+ cosh(βωk)

)2 . (5)

The Kosterlitz�Thouless temperature (TKT
c ) is deter-

mined in d = 2 from the universal relation:

kBT
KT
c =

π

2
ρs(T

KT
c ). (6)

2. Numerical results

One of the most important quantities related to super-
conductivity is the gap parameter. As is well known,
the BCS theory predicts the existence of an isotropic
order parameter, which vanishes at the temperature of
the superconductor-normal phase transition. However,
intensive studies of the gap parameter for high-Tc super-
conductors indicate signi�cant di�erences with respect to
the predictions of the BCS theory. Most of the measure-
ments show that its value in the ground state is much
larger than the value of ∆ in conventional superconduc-
tors [10]. The symmetry of the energy gap can be deter-
mined from measurements of the changes in its magni-
tude for di�erent momentum directions |∆k|. Most stud-
ies indicate the dx2−y2 pairing symmetry (with the energy
gap ∆k = ∆η(cos(kx)− cos(ky))) [11].

Fig. 1. Dependence of∆η on the magnetic �eld (a) and
temperature (b), W = −2 for a �xed µ = −1.25. In the
pannel (b), for h = 0.16 and h = 0.18 the lower branches
are unstable. For T = 0 (a) and h = 0.2 (b) the vertical
dashed lines denote the �rst order phase transition from
the magnetized superconductor state (SC(P ̸= 0)) to
the normal state (NO).

The d-wave pairing symmetry is also very interesting
from the point of view of the BP state (or Sarma phase)
in imbalanced ultracold Fermi gases.

We start from the analysis of the in�uence of the mag-
netic �eld on the order parameter characteristics.

If h = 0, in the case of the d-wave pairing symmetry,
the order parameter vanishes for some values of the wave
vector k, i.e. along the lines |kx| = |ky| (in four nodal
points on the Fermi surface). Disappearance of the gap
on the Fermi surface leads to the existence of zero energy
quasiparticles. It is justi�ed to believe that the Sarma-
type phase will be stable at h ̸= 0, in the weak coupling
limit, as opposed to the s-wave pairing symmetry case in
2D.

Figure 1 shows the dependence of the order parameter
amplitude (∆η) on the magnetic �eld (a) and tempera-
ture (b), for W = −2, µ = −1.25. As one can see in
Fig. 1a, there are two di�erent branches of the solutions
for ∆η ̸= 0, at T = 0, as in the s-wave pairing sym-
metry case [12]. However, as opposed to the isotropic
order parameter case, the upper branch of the solutions
of ∆η is dependent on the magnetic �eld in the ground
state. Therefore, a �nite polarization (P = M/n) occurs
in the system, for arbitrarily small value of the magnetic
�eld, even at T = 0. This is explained by the creation
of polarized quasiparticle excitations in the nodal points
of the gap [13, 14]. Moreover, this branch is stable up to
h ≈ 0.2. At this point, the �rst order phase transition
from the polarized superconducting to the normal state
occurs. On the other hand, the lower branch, which also
depends on h, is unstable at T = 0. Obviously, the po-
larization increases with increasing temperature. Thus,
the range of occurrence of the Sarma-type phase (the su-
perconducting state with P ̸= 0) increases.

As mentioned above, the d-wave pairing symmetry at
h = 0 is gapless in four nodal points on the Fermi sur-
face. In the weak coupling limit, at h = 0, the nodal
points are located at (±π

2 , ±
π
2 ). However, the gap (Eg)

in the density of states is �xed by the location of the
logarithmic singularities. The value of Eg is determined
by the maximum value of the energy gap: Eg = 2∆max,
where ∆max = 4∆η.

The in�uence of the Zeeman magnetic �eld on the den-
sity of states is signi�cant. If h ̸= 0, the densities of
states are di�erent for the particles with spin "up" and
spin "down". The gap appears in the density of states
for the minority spin species and equals 2h [15]. The
occurrence of the gap in the density of states is caused
by the existence of some minimum non-zero quasiparticle
energy.

Now, let us consider the ground state phase diagrams
for the d-wave pairing symmetry case, in the weak cou-
pling regime. Both the �xed chemical potential and the
�xed electron concentration case have been analyzed.

In the s-wave case and in the weak coupling regime,
the superconducting phase with P = 0 (SC0) is stable at
T = 0. However, the analysis of the d-wave order param-
eter behavior, the density of states and the momentum
distributions characteristics [15] indicate the possibility
of the occurrence of stable SC(P ̸= 0) phase at T = 0,
even in the weak coupling regime, as opposed to the s-
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Fig. 2. Critical magnetic �eld vs. the chemical poten-
tial (a) and the electron concentration (b) for the �rst
order SC(P ̸= 0)-NO transition, at T = 0; three di�er-
ent values of the attractive interaction.

wave pairing symmetry case in 2D [16]. As shown above,
for in�nitesimally low value of the magnetic �eld, the
state is stable. The SC(P ̸= 0) phase is the super�uid
state of coexisting Cooper pairs and excess fermions, with
the latter responsible for �nite polarization (magnetiza-
tion) and the gapless excitations characteristic for this
state.
At higher values of the Zeeman magnetic �eld, SC(P ̸=

0) is destroyed by the paramagnetic e�ect or by popu-
lation imbalance. Then, there is the �rst order phase
transition from the polarized superconducting phase to
the polarized normal state. The �rst order transition is
manifested by the presence of the phase separation (PS)
region in the phase diagrams at �xed n (see: Fig. 2b).
The phase separation occurs between SC(P ̸= 0) with
the number of particles ns and NO with the number of
particles nn. It is worth mentioning that the d-wave su-
per�uidity is stable around the half-�lled band in the
weak coupling limit and its range of occurrence widens
with increasing attractive interaction.
Let us discuss the �nite temperature phase diagrams.
One of the well-known results concerning the in�uence

of the Zeeman magnetic �eld on superconductivity is the
existence of the so-called Clogston limit [17]. In the weak
coupling regime, for the s-wave pairing symmetry case,
at T = 0, the superconductivity is destroyed through the
paramagnetic e�ect and the �rst order phase transition
to the normal state at a universal value of the critical
magnetic �eld hc = ∆0/

√
2 ≈ 0.707∆0, where ∆0 is, the

gap at T = 0 and h = 0. In turn, this universal value of
the magnetic �eld in which the superconducting state is
destroyed in the ground state, for the d-wave pairing sym-

Fig. 3. Temperature vs. magnetic �eld (a) and polar-
ization (b) phase diagrams for W = −2, three values of
µ; SC0 � non-polarized superconducting state (P = 0),
SC(P ̸= 0) � 2D superconductor in the presence of the
polarization, NO � partially-polarized normal state.
The thick solid line is the second order phase transition
line from pairing without coherence region to NO. The
thin dashed line is an extension of the 2nd order tran-
sition line (metastable solutions). The thick dashed-
double dotted line is the Kosterlitz�Thouless transition
line. The thick dotted line denotes the �rst order phase
transition to NO. ∆0 = 4∆η denotes the gap at T = 0
and h = 0.

metry case at half-�ling is: hd−wave
c = 0.56∆max [14],

where ∆max = 4∆η at T = 0 and h = 0.
Figure 3 shows the temperature vs. magnetic �eld (T−

h) and polarization (T −P ) phase diagrams for W = −2
and three values of the chemical potential. These �xed
values of µ correspond to lower values of n than n =
1, therefore the d-wave Clogston limit is not reached.
However, our results for µ = 0 (n = 1) agree with the
ones from the paper [14], i.e. indeed hd−wave

c = 0.56∆max

for this case.
We take into account the phase �uctuations in d = 2

within the KT scenario, as in the s-wave pairing symme-
try case [8]. In such way, we can estimate the phase co-
herence temperatures, in addition to the mean �eld (MF)
temperatures. The solid lines (2nd order transition lines)
and the PS region are obtained within the mean �eld
approximation (MFA). The curves below the �rst order
phase transition lines on the phase diagrams (the thin
dotted lines) are the extension of the 2nd order transi-
tion lines below tricritical points. The thick dash-double
dotted lines denote the KT transition. The system is a
quasi superconductor (qSC) below TKT

c . Between TKT
c

and THF
c pairs still exist, but without a long-range phase

coherence (the pseudogap behavior). The KT tempera-
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tures are much smaller than THF
c . This can be seen par-

ticularly clearly for �xed µ = −0.5 and W = −2 case �
the di�erence between TKT

c and THF
c amounts to nearly

50%. However, this di�erence decreases with decreasing
µ (decreasing n) and decreasing attraction (in the weak
coupling limit). The second order phase transition takes
place from the pairing without coherence region to the
normal state at su�ciently low values of the magnetic
�eld. With increasing h, the character of the transition
between the pairing without coherence region and the
normal state changes from the second to the �rst order,
which is manifested by the existence of the MF tricritical
point on the phase diagrams. The topology of the (T−h)
diagrams is the same as in the s-wave case [12].
However, qualitative di�erences between the s-wave

and d-wave pairing symmetries are clearly visible in
(P − T ) phase diagrams. At T ≥ 0 and P = 0, there
is the unpolarized superconducting phase, both for the s-
wave and the d-wave pairing symmetry case. At T = 0,
there is only the PS region, for the whole range of po-
larizations, i.e. P > 0, for the isotropic order parameter
case. In turn, in the d-wave pairing symmetry case, there
is the spin-polarized superconducting phase at T = 0,
up to some critical value of the polarization, for which
the �rst order phase transition to the normal state takes
place. In the PS region, not only the polarizations, but
also the particle densities in SC and NO are di�erent. At
T = 0 and for the s-wave pairing symmetry, this sepa-
ration region is between the SC0 phase and the normal
state, while in the d-wave pairing symmetry it is between
SC(P ̸= 0) and NO. At T ̸= 0, ∆ ̸= 0 and P ̸= 0, the sys-
tem is also in the polarized qSC phase (i.e. homogeneous
superconductivity in the presence of the spin polariza-
tion) in the s-wave pairing symmetry case up to TKT

c .
The KT phase is restricted to the weak coupling region
and low values of P , as in the d-wave pairing symmetry
case. Increasing polarization favors the phase of incoher-
ent pairs. As shown in Fig. 3b, the range of occurrence
of qSC in the presence of P widens in the weak coupling
regime with increasing µ (increasing n). In the s-wave
pairing symmetry case, one can distinguish the gapless
region at su�ciently high values of the magnetic �eld
and temperature. As mentioned before, the d-wave pair-
ing symmetry at h = 0 is gapless in four nodal points on
the Fermi surface. Therefore, the natural consequence
of this is the occurrence of the gapless region also for
in�nitesimally low values of h, even at T = 0.

3. Conclusions

We have investigated the in�uence of a Zeeman mag-
netic �eld on the super�uid characteristics of the EHM,
within the mean �eld approximation. We have analyzed
the pure d-wave pairing symmetry case. At T = 0, in the
presence of the magnetic �eld, the ground state is the spa-
tially homogeneous spin-polarized super�uid state, which
has a gapless spectrum for the majority spin species, for
a weak attraction, as opposed to the s-wave pairing sym-
metry case in 2D. With increasing h, the �rst order phase
transition takes place to the NO state. We have also ex-

tended our analysis to �nite temperatures in d = 2 by
invoking the KT scenario. At �nite temperatures, in the
weak coupling regime and for �xed µ, the following states
have been found in the 2D system: at h = 0 � the SC0

phase; at T = 0, h ̸= 0 � polarized super�uid state
with a gapless spectrum for the majority spin species; at
T > 0 � qSC(P ̸= 0) (below the Kosterlitz�Thouless
temperature); region of pairs without coherence (below
the Hartree temperature); the PS region and NO. PS
terminates at MF TCP, in (T − P ) phase diagrams.
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