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We study the electronic structure of iron-based superconductors FeSe1−xTex within the density functional
theory. We pay particular attention to the pressure e�ects on the Fermi surface (FS) topology, which seem
to be correlated with a critical superconducting temperature TC of iron chalcogenides and pnictides. A reduc-
tion of the FS nesting between hole and electron cylinders with increasing pressure is observed, which can lead
to higher values of TC . The tellurium substitution into selenium sites yields FS changes similar to the pressure e�ect.
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1. Introduction

Iron chalcogenides FeSe1−xTex are members of promis-
ing family of Fe-based high temperature superconduc-
tors [1]. Non-stoichiometric Fe1+δSe have been found
to be superconducting at 8 K [2]. Tellurium substitu-
tion into selenium sites raises the critical temperature
TC in FeSe1−xTex up to 15 K for x = 0.5 [3�5]. Ad-
ditionally, TC increases to 37 K for FeSe [6�10] and to
26 K for FeSe0.5Te0.5 [11, 12] under external pressure.
On the other hand, the end member FeTe (x = 1) is
no longer superconducting, but shows antiferromagnetic
phase at low temperatures. Disorder has also in�uence on
chalcogenide properties. It can be introduced by excess
iron atoms (de�ciency of selenium) in Fe1+xSe (FeSe1−x)
layer [13] or by doping with Ni, Co and Cu into Fe
sites [14�18]. Recently, ternary compounds AxFe2Se2
with alkai metal A = K, Rb, Tl, Cs between FeSe layers
have been investigated due to promising TC > 30 K [19�
22].
These compounds containing no arsenic atoms, unlike

pnictide superconductors, are particularly important for
applications. They are also convenient for theoretical
investigations because of simple both chemical composi-
tions and crystal structures.
The main aim of this paper is to examine the pres-

sure e�ect on electronic structure of FeSe1−xTex in the
normal state within the density functional theory (DFT)
calculations. We describe our computational methods
and give structural parameters obtained by a geometry
optimization under pressure for FeSe and FeSe0.5Te0.5
compositions in the tetragonal phase of the PbO-type
(P4/nmm). The results of band structure calculations
corresponding to ambient and higher pressures are pre-
sented. We are especially interested in the changes of
the Fermi surface (FS) topology under pressure, which
is suspected to be correlated with superconducting tem-
peratures of iron chalcogenides and pnictides.
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2. Computational details

We have studied FeSe1−xTex superconductors with
x = 0 and 0.5 displayed in Fig. 1. All calcula-
tions were performed in the framework of DFT within
the local-density approximation (LDA) of the exchange-
correlation potential. We used the based on plane-
waves and PAW (Projector Augmented Wave) methods
QUANTUM-ESPRESSO code [23] and ABINIT [24] to
optimize both lattice parameters and atomic positions in
the unit cell. Then we employed the FPLO (full-potential
local-orbital) code [25] to calculate all electronic proper-
ties of FeSe1−xTex under external pressure.

Fig. 1. Schematic tetragonal crystal structure of
FeSe1−xTex (x = 0.5) of the PbO-type (space group
P4/nmm).

The following valence con�gurations were used in our
calculations: 3d64s24p0, 3d104s24p4 and 4d105s25p4 for
Fe, Se and Te, respectively. Total energy of considered
systems was converged with accuracy to 10−4 Ry for the
plane waves energy 50 Ry cut-o�. The 12× 12× 12 (196
points) k-point mesh in the non-equivalent part of the
Brilouin zone was su�cient.
The �rst step of the analysis was geometry relaxation

of the FeSe1−xTex crystal structure in the tetragonal
phase, which was performed with 0.05 GPa convergence
criterion on the pressure (10−3 Ry/Bohr on forces). The
calculated lattice parameters at ambient pressure are pre-
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TABLE
Experimental and calculated lattice constans a, c, and
free zSe/Te parameters of FeSe and FeSe0.5Te0.5 at p = 0.
The bulk modulsB0 obtained from the third-order Birch�
Murnaghan equation of state.

a [Å] c [Å] zSe/zTe B0 [GPa]
FeSe(exp.)a 3.7742 5.4545 0.266 30.7

3.7658 5.4988 0.266 31
FeSe(opt.) 3.5963 5.4310 0.256 32.9
Fe1.03Se0.57Te0.43(exp.)a 3.8007 5.9926 0.274 36.6
FeSe0.5Te0.5(exp.)a 3.8003 5.9540 0.256

0.285
FeSe0.5Te0.5(opt.)a 3.6546 5.6847 0.238 33.6

0.289
a According to [7, 8, 12] and [26], respectively.

Fig. 2. Calculated pressure evolution of the lattice pa-
rameters a, c ((a) and (d)) as well as the chalcogen
atom distance from the iron plane ((b) and (e)) for FeSe
and FeSe0.5Te0.5. Their corresponding unit cell-volume
changes vs. pressure (squares), �tted to the equation of
states (lines), are shown in parts ((c) and (f)), respec-
tively.

sented in the Table. The results of full geometry relax-
ation di�ers from both experimental data [7, 8, 12] and
results of calculations limited to optimization of the free
zSe/Te parameters [27�29].

Figure 2 shows the pressure dependence of the cell pa-
rameters and Fe/Se distance from the iron plane in FeSe
and FeSe0.5Te0.5 compounds. We �tted our data with
the third order Birch�Murnaghan equation of state [30]:
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where B0 is the bulk modulus, B′
0 is its pressure deriva-

tive and V0 is the equilibrium unit cell volume. The ob-
tained B0 parameters are in good agreement with the
previous experimental data [7, 8, 12] (Table).

3. Electronic structure
The electronic structure of FeSe1−xTex near the Fermi

energy contains mainly the Fe-3d states [27] as can be
seen from the distinct orbital character of bands (Fig. 3
for FeSe at p ∼= 9 GPa) as well as orbital-projected densi-
ties of states (DOS) plotted in Fig. 4. However, the bands
at the Fermi level (EF ) have also contributions from the
pz orbitals, which indicates that Te/Se-p orbitals may
play a substantial role in superconductivity as well. A
higher DOS at EF is observed in FeSe0.5Te0.5 than in
FeSe. This suggests a small increase of electronic den-
sity with raising tellurium content. In both compounds,
the densities at the Fermi energy are slightly enhanced
under pressure. Zero pressure values of DOS at EF are
1.49 eV−1 for FeSe and 1.73 eV−1 for FeSe0.5Te0.5. At
pressures corresponding to the maximum critical temper-
atures, the densities are equal to 1.54 eV−1 (p ∼= 9 GPA)
and 1.77 eV−1 (p ∼= 2 GPa), respectively.

Fig. 3. The electronic band structures of FeSe along
high-symmetry lines at p = 9 GPa.

Fig. 4. The total and orbital projected electronic DOS
for (a) FeSe and (b) FeSe0.5Te0.5 at ambient and higher
pressures.
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Fig. 5. The Fermi surface sheets of FeSe (drawn separately for each of �ve bands) at (a) 0 and (b) 9 GPa.

Fig. 6. Changes in the Fermi surface nesting between
electron and hole sheets of FeSe under external pressure.

In general, the Fermi surface of FeSe1−xTex com-
pounds exists in �ve bands and consists of two elec-
tron cylinders δ and δ′, centred at the M point, and
three holelike sheets around the Γ point � two outer
cylinders and one inner closed pocket (labelled as α, β,
γ) [27, 28]. Figure 5 visualizes all FS sheets for FeSe
under ambient and higher pressures. The electron and
hole cylinders are separated by the nesting vector close
to q = [π, π, 0] (Fig. 6). Due to this fact, the spin-
density waves (SDW) can compete with the supercon-
ducting (s-wave-type) pairing. Under external pressure,
the cylinders are more corrugated and the FS nesting is
suppressed [9].
In turn, the Fermi surface sheets in FeSe0.5Te0.5 (not

shown) have also more three-dimensional character in
comparison with FeSe system and the cylinders yield
more imperfect nesting upon increasing pressure. Thus,
both tellurium substitution and external pressure have
the similar e�ects on electronic structure of iron chalco-
genides in the tetragonal phase.

4. Conclusions

We have studied the e�ect of external pressure on both
crystal and electronic structures of FeSe1−xTex super-

conductors. The in�uence of tellurium content was also
investigated. Correlations between critical temperature,
lattice parameters and topology of the Fermi surface were
observed. The increase of pressure as well as Te substi-
tution raise the values of zSe/Te causing suppression of
the Fermi surface nesting.
In FeSe0.5Te0.5 at p = 0, due to the reduced FS nest-

ing, a possible SDW state becomes more unstable than
in FeSe. Hence, the superconducting phase can appear
at an earlier stage in the former system. In both com-
pounds, the imperfect FS nesting of the corrugated cylin-
ders is enhanced with increasing pressure, which can lead
to higher values of TC .
The orbital character of bands and projected DOS con-

�rm that the electronic structure near the Fermi energy
consists of Fe-3d electrons being slightly hybridized with
chalcogenide 3p/4p states. A higher DOS at the Fermi
level is observed under pressure, which usually improves
superconducting properties.
In previous experiments, critical temperature reaches

maximum under �nite pressures and then structural
phase transitions take place [7, 9, 12]. Therefore, the
observed TC-increase seems to be caused by the pressure-
induced changes in the tetragonal phase. When this
phase begins to diminish, the trend is reversed (TC de-
creases). Ab initio investigations of such e�ects will be
undertaken in the future.
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