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Interference E�ects on Double Quantum Dots Coupled

Between Metallic and Superconducting Leads
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We describe the quantum interference e�ects in the nanodevice consisting of the double quantum dot coupled
to the metallic and superconducting electrodes. In such heterostructures the superconducting properties are
spread to the quantum dot due to the proximity e�ect. We investigate the density of states and anomalous
Andreev conductance of the interfacial quantum dot exploring the conditions necessary for appearance of the
Fano-type lineshapes. We also consider the electron correlations and discuss an interplay between the Coulomb
blockade and the Fano-type interference.
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1. Introduction

When nanoobjects like quantum dots (QDs) are con-
nected to superconductor (S) the Cooper pairs may dif-
fuse from S to QD [1]. The di�usion is possible because
the quantum dot behaves like a superconducting grain [2�
5]. This phenomenon is known as the proximity e�ect.
With such quantum dot coupled to superconducting

and metallic leads the indirect Andreev current via quan-
tum dot becomes possible. In fact, in the extreme limit
∆p → ∞ [2, 4] the single particle current is forbidden
and the Andreev re�ection is the only possible transport
channel.
Heterostructures involving the quantum dots coupled

to superconducting and metallic leads represent also the
attractive �eld to investigate an interplay between the su-
perconducting order and correlation e�ects [1]. Usually
the on-dot pairing is strongly suppressed by the Coulomb
repulsion but, if QD is coupled to superconductor with
the strength ΓS much bigger than the coupling ΓN to
the normal metal, the proximity induced pairing could
be dominant. Here we focus on the regimes where such
correlation e�ects and the superconducting order can co-
exist.
Some aspects of a competition between the correlations

and proximity e�ect have been so far addressed by a num-
ber of authors (see e.g. the review paper [6] and other
references cited therein) using various techniques ranging
from the perturbative expansions, the auxiliary �elds to
the exact solution within the numerical renormalization
group scheme. Besides the rather obvious e�ect of the
Coulomb blockade it has been also argued [6] and later
on con�rmed experimentally [1] that for ΓS ≈ ΓN the
formation of the Kondo resonance slightly enhances the
subgap Andreev conductance.
In the present study we discuss the interference e�ects

that occur in a presence of additional degrees of freedom.
For this purpose we consider the side-coupled quantum
dot which is connected only to the interfacial QD (Fig. 1).
The additional quantum dot allows for an extra pathway
when electrons have the energies ϵ2, corresponding to the
levels at the side-coupled quantum dot [7].

Fig. 1. Schematic illustration of the double quantum
dot coupled in the T-shape con�guration to the metallic
(N) and superconducting (S) leads.

2. The model and method

We start with the Anderson impurity Hamiltonian

Ĥ = ĤN + ĤS + ĤDQD + Ĥt, (1)

where

ĤN =
∑
k,σ

ξkĈ
†
k,σĈk,σ, (2)

ĤS =
∑
p,σ

ξpĈ
†
p,σĈp,σ −

∑
p

(
∆pĈp,↑Ĉ−p,↓ + h.c.

)
,(3)

are respectively the Hamiltonians of metal-
lic/superconducting reservoirs with the energies

(812)
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ξk = ϵk − µβ measured from the chemical poten-

tials µN and µS . Ĉ†
k,σ(Ĉk,σ) are creation (annihilation)

operators in metal (index k) and superconductor (index
p) in two possible con�gurations σ =↑, ↓ and ∆p is the
energy gap of superconductor. The double quantum dot
(DQD) nanostructure is described by the Hamiltonian

ĤDQD =
∑
σ,i

ϵid̂
†
i,σd̂i,σ + t

∑
σ

(
d̂†1,σd̂2,σ + h.c.

)
+U1n̂1,↑n̂1,↓, (4)

where ϵi is energy of each quantum dot (interfacial
i = 1 and orbital i = 2), t denotes the hopping integral
between the quantum dots and U1 is the on-dot Coulomb

repulsion. As usually, d̂†i,σ(d̂i,σ) stand for the creation

(annihilation) operator of σ spin electron on the i-th
dot. Transport phenomena of the setup (Fig. 1) are
provided by the hybridization of the interfacial QD to
the external electrodes

Ĥt =
∑
k,β,σ

Vk,β

(
d̂†1,σĈk,β + h.c.

)
. (5)

It is useful to introduce the constant coupling strength
between the interfacial dot and both reservoirs

Γβ = 2π
∑
k,β

|Vk,β |2δ(ω − ξk), (6)

and we shall use ΓN as the unit for energies. To �nd
the density of states and the e�ective transmittance we
need to calculate the matrix elements of the retarded
Green's function G1(τ) = −Tτ ⟨Ψ(τ)Ψ †⟩ in the Nambu

representation Ψ † ≡ (d̂†1↑, d̂1↓), Ψ ≡ (Ψ †)†.
The Dyson equation

G1(ω)
−1 =

(
ω − ϵ1 0

0 ω + ϵ1

)
− Σ 0

d1
− ΣU

d1
(ω), (7)

consists of the selfefenergy, where Σ 0
d1

originates from

the non-interacting case (U = 0) and ΣU
d1

corresponds
to the correlation e�ects. By focusing �rst on the non-
interacting case we analyze the deep subgap regime |ω| ≪
|∆p|, where the selfenergy is given by Σ 0

d1
[9]

Σ 0
d1

=

(
− iΓN

2 + t2

ω−ϵ2
−ΓS

2

−ΓS

2 − iΓN

2 + t2

ω+ϵ2

)
. (8)

3. Coexistence of the proximity and Fano e�ects

Fixing the initial energy of the interfacial quantum
dot at zero ϵ1 = 0 we noticed that energy spectrum
ρ(ω) = − 1

πℑG1,11(ω+ i0†) of QD1 is symmetrically split

by the induced energy gap ∆d = 1
2ΓS (see the solid line

in Fig. 2). For ϵ1 ̸= 0 the quasiparticle peaks move to

the energies ω = ±E1 = ±
√
ϵ21 +

(
ΓS

2

)2
and they are

weighted by the BCS coe�cients u2, v2 = 1
2 (1±

ϵ1
E1

).

The Fano-type resonance/antiresonance lineshapes ap-
pear near the energies ±ϵ2. These shapes are clearly the
result of an additional degree of freedom for electrons
that can hop in/from the side-coupled QD. For a weak
hoping amplitude t ≪ ΓN the resonance near ±ϵ2 is due

Fig. 2. Density of states of the interfacial quantum
dot QD obtained for ΓS = 5ΓN , ϵ2 = 0.7ΓN , t =
0.3ΓN and few values of ϵ1. Quasiparticle peaks at
±
√

ϵ21 + (ΓS/2)2 are weighted by the BCS coe�cients
(u2, v2) and the interference structures appear around
±ϵ2.

Fig. 3. Density of states of the interfacial quantum dot
QD obtained for ΓS = 5ΓN , ϵ1 = ΓN , ϵ2 = 0.6ΓN and
three values of the interdot hoping parameter t. For
t = 0.3ΓN the Fano lineshapes are formed near ±ϵ2. For
large t = 2ΓN , t = 3ΓN they evolve into the additional
quasiparticle peaks.

to the induced pairing in the side-coupled quantum dot⟨
d̂†2↑d̂

†
2↓

⟩
. This indirect proximity e�ect is transmitted

via the interfacial QD.
For a relatively small hoping integral t ≪ ΓN the in-

terference e�ects are manifested by Fano-type lineshapes
formed at energies ±ϵ2. With increasing parameter t the
Fano structures evolve into the new quasiparticle peaks
shifted from the initial position ±ϵ2 (see Fig. 3). This is
partly related to an increasing superconducting order of
the second quantum dot. The energy level of the side-
coupled QD is signi�cantly split by the induced energy
gap.

4. The Andreev conductance

Transport properties of our setup may be measured
by the di�erential conductance dI

dV . In the regime of
|eV | ≪ |∆| the single particle current is suppressed and
the only possible transport occurs via Andreev-type scat-
tering where electron from the normal metal is converted
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to Cooper pair (that propagates in superconductor) with
a hole re�ection back to the normal metal. We calculate
such Andreev current via the interfacial QD using the
Landauer-like formula [8]

IA(V ) =
2e

h

∫
dωTA(ω)

(
f(ω − eV, T )

−f(ω + eV, T )
)
, (9)

where TA(ω) = Γ 2
N |G1,12(ω)|2 is the transmittance de-

pending on the o�-diagonal parts of the retarded Green's
function (7) and f(ω, T ) is the Fermi distribution.

Fig. 4. Di�erential Andreev conductance GA(V ) =
dIA(V )

dV
as a function of the bias voltage eV obtained

for the parameters ϵ1 = 0, ΓS = 5ΓN , t = 0.6ΓN and
several values of ϵ2. The broad quasiparticle peaks are
formed near ±

√
ϵ21 + (ΓS/2)2 and the Fano-type line-

shapes are seen near ±ϵ2.

Fig. 5. The Fano-type lineshapes near ±ϵ2 in the An-
dreev conductance obtained for ΓS = 5ΓN , ϵ2 = 0.3ΓN

and several values of ϵ1.

The indirect proximity e�ect transmitted onto the side-
coupled quantum dot allows the Cooper pairs to hop be-
tweenQD1 andQD2. This phenomenon is pronounced in

the Andreev di�erential conductance GA(V ) = dIA(V )
dV .

On top of the quasiparticle peaks appearing at eV =
±
√

ϵ21 + (ΓS/2)2 we notice additional substructures near
±ϵ2 which take a form of the Fano-type lineshapes as
shown in Fig. 4. These Fano-type features are well pro-
nounced for a small hopping integral t and also the en-
ergy level ε1 has an in�uence on their �ne structure (see
Fig. 5).

5. Interplay with correlations

We now inspect the role of Coulomb repulsion U on
the density of states in QD1. The main objective of this
section is to investigate an interplay between the Fano-
type interference with the correlations and the proximity
e�ect.
In order to perceive the correlation e�ects appearing

on the interfacial quantum dot we extend our previous
procedure [2] approximating the selfenergy part that cor-
responds to correlations by the diagonal matrix

ΣU (ω) =

(
ΣN (ω) 0

0 −Σ∗
N (−ω)

)
. (10)

By imposing the o�-diagonal parts of ΣU (ω) equal to
zero we neglect the in�uence of correlations on the in-
duced on-dot pairing. As long as we stay in the deep
subgap regime an eventual suppression of the dot pairing
by the Coulomb repulsion seems to be rather justi�ed.
To estimate the selfenergy of our system we use the

Hubbard I approximation

1

ω − ϵ1 − ΣN (ω)
=

1− ⟨n1,−σ⟩
ω − ϵ1

+
⟨n1,σ⟩

ω − ϵ1 − U
. (11)

We assume that our system is close to half-�lling ⟨n1σ⟩ ≈
1/2 and the energy levels are placed symmetrically with
respect to the chemical potential ϵ1 = −U/2, ϵ1 + U =
U/2. With these assumptions we can express the Dyson
equation (7) in the following form

G(ω)−1 =

 ω2−(U
2 )

2

ω 0

0
ω2−(U

2 )
2

ω

− Σ 0
d1
, (12)

where Σ 0
d1

is given by the expression (8).

Fig. 6. Density of states of the correlated QD1 ob-
tained in the equilibrium case for ΓS = 3ΓN , U = 2ΓN

and ε2 = 1.4ΓN .

We investigated the in�uence of quantum interference
on the energy spectrum of the correlated quantum dot
coupled to superconductor. For the case of the single
quantum dot (t = 0) we noticed that in presence of
the superconducting electrode both initial energy levels
(±U/2) of the interfacial QD are split by an induced en-
ergy gap ∆d = ΓS/2. In Fig. 6 we show that additional
coupling to the upper quantum dot (with energy ϵ2) in-
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duces the Fano superstructures appearing in the energy
spectrum near ω = ±ϵ2.

6. Conclusions

We have analyzed the energy spectrum and charge
transport properties of the double quantum dot coupled
to the metallic and superconducting leads, focusing on
the deep subgap regime ∆p ≫ |eV |. We noticed that the
superconducting order induced in the interfacial quan-
tum dot may extend onto the side-attached quantum dot
which has no direct contact with superconductor. For a
weak interdot hoping we observe the Fano-type interfer-
ence in the spectral function and in the Andreev conduc-
tance, while for t ≃ ΓN the quantum interference leads to
the additional quasiparticle peaks. We have explored the
di�erential conductance in the regime |eV | ≪ ∆, where
electron transport is possible only through the Andreev
re�ection. We have found a remarkable in�uence of the
interference e�ects on the transport properties, whenever
the source-drain voltage is close to the energy of the side-
attached quantum dot. Finally, we have given some qual-
itative insight to the interplay between correlation e�ects
and quantum interference in presence of the proximity in-
duced energy gap.
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