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We consider the coexistence of the Hund's-rule-exchange induced spin-triplet paired state with the antifer-
romagnetic ordering by starting from the extended Hubbard model for a doubly degenerate band. We use the
density of states appropriate for the square lattice and treat the problem in the Hartree�Fock approximation.
The temperature dependences of the superconducting gaps, the magnetic moment, and the chemical potential
are presented. The free energy in the considered phase is evaluated, as well as the corresponding free energies in
four additional phases: paramagnetic, ferromagnetic, superconducting of type A and superconducting of type A1
coexisting with ferromagnetism; they occur in the proper range of parameters: band �lling n and the interaction
parameters U/W and J/W . The low temperature values of the superconducting gaps and staggered magnetic
moment are also analyzed as a function of band �lling.
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1. Introduction

It is believed that the spin-triplet superconducting
phase appears in Sr2RuO4 [1], UGe2 [2] and URhGe [3].
In the last two compounds the considered type of su-
perconducting phase occurs as coexisting with ferromag-
netism. It has been shown [4�7] that the two phenomena
may possibly have the same origin � the intra-atomic
Hund's rule exchange, which can also lead to the coex-
istence of superconductivity with other type of magnetic
ordering � antiferromagnetism. The coexisting super-
conducting and antiferromagnetic phase is discussed in
this work for the extended two band Hubbard model with
the use of the simplest Hartree�Fock approximation. For
the sake of completeness, we also include some of the ear-
lier results [7] concerning the superconducting phase of
type A and the ferromagnetic phase coexisting with the
superconducting phase of type A1.

2. Model

We consider the extended orbitally degenerate Hub-
bard Hamiltonian, which has the form

Ĥ =
∑

ij(i ̸=j)lσ

tij â
†
ilσâjlσ + U

∑
il

n̂il↑n̂il↓

−J
∑

ill′(l ̸=l′)

(
Ŝil · Ŝil′ +

3

4
n̂iln̂il′

)
, (1)

where l = 1, 2 label the orbitals and the �rst term de-
scribes electron hopping between atomic sites i and j.
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The second term describes the intra-atomic Coulomb in-
teraction between electrons on the same orbital. The
third term introduces the (Hund's rule) ferromagnetic
exchange between electrons localized on the same site,
but on di�erent orbitals. In this model we neglect
the interaction-induced intra-atomic singlet-pair hopping
∼ J and the correlation induced hopping [8], as well as
the inter-orbital Coulomb repulsion, as they should not
introduce any important new feature in the considered
here Hartree�Fock approximation. In this model for the
sake of clarity, we neglect also the interorbital hybridiza-
tion.

It can be shown that [4] one can represent the full
exchange term with the help of the real-space pair oper-
ators, in the following manner

J
∑

ill′(l ̸=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
≡ 2J

∑
i,m

Â†
imÂim, (2)

which are de�ned in the following way [9]

Â†
i,m ≡


â†i1↑â

†
i2↑ m = 1

â†i1↓â
†
i2↓ m = −1

1√
2
(â†i1↑â

†
i2↓ + â†i1↓â

†
i2↑) m = 0

. (3)

In our considerations the antiferromagnetic state re�ects
the simplest form of the spin-density-wave state. In this
state, we can divide our system into two interpenetrat-
ing sublattices. We name those sublattices A and B. In
the antiferromagnetic phase, the average magnetic (stag-
gered) moment of electons on each of N/2 sublattice A
sites is equal ⟨Sz

i ⟩ = ⟨Sz
A⟩, whereas the electrons on the

remaining N/2 sublattice B sites have magnetic moment
⟨Sz

i ⟩ = ⟨Sz
B⟩ ≡ −⟨Sz

A⟩. In accordance with the division

(801)
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into the sublattices we de�ne di�erent annihilation oper-
ators for each sublattice, namely

âilσ =

{
âilσA
âilσB

. (4)

We do the same for the creation operators, â†ilσ. For
modeling purposes, we assume that the bands are iden-
tical and the charge ordering is absent. In this situation,
we can write that

⟨Ŝz
i1A⟩ = ⟨Ŝz

i2A⟩ ≡ S̄z, ⟨Ŝz
i1B⟩ = ⟨Ŝz

i2B⟩ ≡ −S̄z, (5)

⟨n̂i1A⟩ = ⟨n̂i2A⟩ = ⟨n̂i1B⟩ = ⟨n̂i2B⟩ ≡ n/2. (6)

In what follows, we treat the pairing and the Hubbard
part in the mean �eld approximation. Applying (4) to
(1) and making the Hartree�Fock approximation we can
write down the Hamiltonian transformed to reciprocal
(k) space in the following form:

ĤHF =
∑
klσ

(
ϵk
(
â†klσAâklσB + â†klσB âklσA

)
−σIS̄z

(
n̂klσA − n̂klσB

))
+

∑
k,m=±1

(
∆∗

mAÂkmA +∆mAÂ
†
kmA

)
+

∑
k,m=±1

(
∆∗

mBÂkmB +∆mBÂ
†
kmB

)
− N̂

4J

(
|∆1A|2 + |∆−1A|2 + |∆1B |2 + |∆−1B |2

)
−N̂

8
(U − 3J)n2 + 2NI(S̄z)2, (7)

where I ≡ U + J is the e�ective magnetic coupling con-
stant, N is the number of atomic sites and ϵk1 = ϵk2 ≡ ϵk

is the dispersion relation in the doubly degenerate band.
One should note that the sum in (7) (and in all the corre-
sponding equations below) is taken over N/2 independent
k states. In the Hamiltonian above we also have intro-
duced the superconducting spin-triplet gap parameters
on the sublattices

∆±1A = −4J

N

∑
k

⟨Âk,±1A⟩,

∆±1B = −4J

N

∑
k

⟨Âk,±1B⟩. (8)

Because we are considering the superconducting phase
coexisting with antiferromagnetism in which all lattice
sites have a nonzero magnetic moment, the Cooper pairs
in the spin-triplet state for m = 0 and spin Sz = 0
(that correspond to the pair operator Âk,0) are not likely
to be created. The phase, in which the gap parame-
ters corresponding to the mentioned spin-triplet state of
the Cooper pairs are nonzero, is not going to be sta-
ble, so we have neglected the term that contains ∆0A =
− 4J√

2N

∑
k⟨Âk,0A⟩ and ∆0B = − 4J√

2N

∑
k⟨Âk,0B⟩.

By introducing the composite fermion creation opera-
tor

f̂
†
k ≡

(
â†k1↑A, â

†
k1↓A, â−k2↑A, â−k2↓A, â

†
k1↑B , â

†
k1↓B ,

â−k2↑B, â−k2↓B
)
, (9)

we can construct the 8×8 Hamiltonian matrix and write

ĤHF − µN̂ =
∑
k

f̂†
kHkf̂k − 4µN̂ , (10)

where f̂k ≡ (f̂†
k)

†, and

Hk =



−IS̄z − µ 0 ∆1A 0 ϵk 0 0 0

0 IS̄z − µ 0 ∆−1A 0 ϵk 0 0

∆∗
1A 0 IS̄z + µ 0 0 0 −ϵk 0

0 ∆∗
−1A 0 −IS̄z + µ 0 0 0 −ϵk

ϵk 0 0 0 IS̄z − µ 0 ∆1B 0

0 ϵk 0 0 0 −IS̄z − µ 0 ∆−1B

0 0 −ϵk 0 ∆∗
1B 0 −IS̄z + µ 0

0 0 0 −ϵk 0 ∆∗
−1B 0 IS̄z + µ


. (11)

In our considerations we limit to the case with the real
gap parameters ∆∗

±1A(B) = ∆±1A(B). After diagonaliza-

tion of (11), we can write down the Hamiltonian in the
following form

ĤHF − µN̂ =
∑
kd

(−1)d+1λkdα̂
†
kdα̂kd − 4µN̂

+
∑
k

(λk2 + λk4 + λk6 + λk8), (12)

where d = 1, 2, 3, . . . , 8 and λkd are the eigenvalues of

the matrix Hamiltonian (11) and α̂kd, α̂
†
kd are the quasi-

particle annihilation and creation operators, which can
be expressed by the initial creation and annihilation op-
erators via generalized Bogoliubov transformation, i.e.,

ĝk = Ukf̂k, (13)

with ĝ†
k ≡

(
α̂†
k1, α̂−k2, α̂

†
k3, α̂−k4, α̂

†
k5, α̂−k6, α̂

†
k7, α̂−k8

)
and ĝk = (ĝ†

k)
†. Eigenvectors of the Hamiltonian ma-

trix (11) are the columns of the diagonalization ma-
trix Uk. Using the de�nitions of gap parameters ∆±1A,
∆±1B , the average number of particles per atomic site
n =

∑
l⟨n̂il↑A+n̂il↓A⟩, and the average magnetic moment
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per band per site Sz = ⟨n̂il↑A−n̂il↓A⟩/2, we can construct
the set of self consistent equations for all mean-�eld pa-
rameters (∆±1A, ∆±1B, S̄

z) and the chemical potential.
The averages that appear in the set of self consistent

equations ⟨α̂†
kdα̂kd⟩ can be replaced by the correspond-

ing Fermi-Dirac distribution function

f((−1)d+1λkd) = 1/[exp(β(−1)d+1λkd) + 1].

The eigenvalues and eigenvectors of matrix (11) are eval-
uated numerically during the procedure of solving the
set of self consistent equations. The detailed procedure
of calculating the free energies and corresponding order
parameters is similar as in our previous work [7]. The
numerical results are obtained by assuming the square
lattice with the hopping t between the nearest neighbors.

3. Results and discussion

In all presented below �gures the energies have been
normalized to the bare band-width W = 8|t|, as well as
T corresponds to the reduced temperature T ≡ kBT/W .

Fig. 1. (a) � temperature dependences of free
energy in phases: coexisting superconducting�
antiferromagnetic (SC+AF), antiferromagnetic (AF),
normal state (NS), ferromagnetic (FM); (b) � free
energies for A, NS, A1+FM and FM phases in the
low-T regime. The free energy for A and A1+FM
phases are not shown in Fig. 1a for the sake of clarity.
For the selected parameters, AF+SC and AF phases are
the only stable phases in proper temperature intervals.

In Fig. 1 we present the temperature dependence of free
energies for the six di�erent phases: NS � normal state,

A � superconducting phase A (∆±1A = ∆±1B ̸= 0),
A1+FM� coexistent superconducting phase A1 (∆1A =
∆1B ̸= 0 and ∆−1A = ∆−1B = 0 ) and the non-
saturated ferromagnetic phase, A1+SFM � coexistent
superconducting A1 and saturated ferromagnetic phase,
SC+AF� coexistent superconducting and antiferromag-
netic phase. Because the free-energy values of the A and
NS phases are very close, we exhibit their temperature
dependences zoomed in Fig. 1b). The same is shown for
the phases A1+FM and FM (bottom part). As one can
see from the Fig. 1, the phase SC+AF has the lowest free
energy below the reduced temperature TS ≈ 0.0123 for
the speci�ed values of the microscopic parameters.

Fig. 2. (a) � temperature dependence of the super-
conducting gaps and the staggered magnetic moment;
(b) � temperature dependence of the speci�c heat for
the to the stable phases.

Temperature dependence of superconducting gaps and
staggered magnetic moment in the SC+AF phase are
shown in Fig. 2. Below TS the staggered magnetic mo-
ment and the superconducting gaps, have all nonzero
values. In the SC+AF phase the gap parameters that
correspond to Cooper pairs with the spin aligned in the
same direction as the magnetic moment on the sublattice
have equal values (∆1A = ∆−1B ≡ ∆+). Gap parame-
ters that correspond to Cooper pairs with spin aligned
in the opposite direction to the magnetic moment on the
sublattice also have equal values (∆−1A = ∆1B ≡ ∆−),
but much smaller than the gap parameters ∆1A, ∆−1B .

In Fig. 2b one can observe that there are two disconti-
nuities in the speci�c-heat temperature dependence. The
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Fig. 3. (a) � gap parameters ∆+ and ∆− and (b) �
staggered magnetic moment both as a function of band
�lling n. The coexistent phase appears near the half
�lling.

�rst, at lower T , corresponds to the phase transition from
the SC+AF phase to the pure AF phase, while the sec-
ond corresponds to the transition from the AF phase
to the normal phase (NS). Near the Néel temperature,
TN ≈ 0.11, the staggered magnetic moment decreases
continuously to zero. The low temperature values of gap
parameters for the AF+SC phase for di�erent values of
band �lling are presented in Fig. 3. One can see that gap
components ∆+ and ∆− tend to zero when the system
is approaching the half �lling (n → 2). On the contrary,
the staggered magnetic moment S̄z reaches then maxi-
mum. Below the critical value of band �lling, nc ≈ 1.45,
the gap parameters ∆+ and ∆− become equal and the
staggered magnetic moment vanishes. In this regime the
superconducting phase of type A is the stable phase. One
should mention that the easiness, with which the super-
conducting triplet state is accommodated within the an-
tiferromagnetic phase stems from the fact that the SC
gaps have an intra-atomic origin and the spins are paral-
lel. Therefore, the pairs respect the Hund's rule and do
not disturb the staggered-moment structure at the same
time.

4. Conclusions

We have obtained the stable coexistent superconduct-
ing and antiferromagnetic phase within the extended two
band Hubbard model using the Hartree�Fock approxima-
tion. For selected values of the microscopic parameters,
that correspond to zero-temperature stability of SC+AF
phase, with the rise of temperature, one can observe two
phase transitions. The �rst is from the SC+AF phase to
the antiferromagnetic phase and the second form the an-
tiferromagnetic phase to paramagnetic state. The tran-
sition temperature ratio is TN/TS ≈ 9. In the super-
conducting phase coexisting with antiferromagnetism we
have introduced two di�erent gap parameters on di�er-
ent sublattices. The calculated gap parameters ful�ll the
relations

∆1A = ∆−1B ≡ ∆+, ∆−1A = ∆1B ≡ ∆−, ∆+ > ∆−.

Full discussion including details of the phase diagram
that contains all considered here phases will be provided
elsewhere.
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