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In the present paper, we investigate a system of strongly interacting bosons con�ned in two-dimensional
optical lattice. We propose a combination of the Bogoliubov method with the quantum rotor approach and
determine the spatial atom�atom correlations. This allows us to calculate time-of-�ight absorption images, which
exhibit all the characteristic features present in experimental results, namely transition from super�uid peaks to
Mott insulating blob.
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1. Introduction

Placing cold atoms in optical lattices allows to strongly
enhance interactions between them. Because, such sys-
tems can be described by Hamiltonians that are also
used for strongly correlated condensed matter many-
body problems, enormous interest to study the proper-
ties of atoms in optical lattices developed recently [1].
Their advantage is obvious: they provide a clean system
without impurities or defects, where almost all important
parameters like lattice geometry and interaction strength
can be easily tuned to almost any arbitrary value [2]. As
a result, they became an almost perfect tool to test the-
oretical models and approximations used to solve them.
As the strong correlations play a leading role in those
systems the analytical studies of correlation functions are
called for [3]. The atom�atom correlation function is de-
�ned by:

C (r, r′) =
⟨
â (r) â† (r′)

⟩
, (1)

where â (r) is a bosonic operator and ⟨. . . ⟩ is statisti-
cal averaging. Experimentally, the atom�atom correla-
tion function is measured by time-of-�ight absorption
images [4, 5]. The cloud of ultra-cold atoms is �rst sud-
denly released from the trapping potential. After a time
of �ight t, the position of the atoms is proportional to
the momentum of the atoms in the initial cloud. Finally,
an absorption image of the expanding cloud of atoms is
taken by a probing laser. The resulting image provides
directly the distribution of the momentum space n(k). It
is our goal of the presented paper, to calculate this quan-
tity using the quantum rotor approach developed in our
previous works [6, 7]. However, in order to maintain the
valid form of the correlation function, the method must
be supplemented by the implementation of the Bogoli-
ubov theory [8]. The remainder of the paper is as follows:

in Section 2, we introduce the microscopic Bose�Hubbard
model, which we use for the description of strongly inter-
acting bosons in an optical lattice. In the following Sec-
tion, we present our method that combines Bogoliubov
approximation with quantum rotors approach. Further-
more, in Section 4, we calculate atom�atom correlation
functions and resulting absorption patterns of time-of-
�ight experiments. Finally, we conclude in the Section 5.

2. Model Hamiltonian

Bosons in optical lattice are described by a micro-
scopic Bose�Hubbard Hamiltonian. The atoms are mo-
bile in the lattice within a tight-binding scheme, while
the correlation is introduced through an on-site repulsive
term. The second quantized Hamiltonian is written in
the form [9, 10]:

Ĥ = −t
∑
⟨r,r′⟩

(
â† (r) â (r′) + â† (r′) â (r)

)
+
U

2

∑
r

n̂2(r)− µ
∑
r

n̂(r), (2)

where t is a nearest neighbors tunneling matrix element
responsible for hopping of bosons between neighboring
sites of a regular two-dimensional (2D) lattice and U is
the on-site repulsive interaction of bosons. The num-
ber of bosons is controlled by a chemical potential µ,
while µ = µ + U

2 . The operators â† (r) and â (r′) cre-
ate and annihilate bosons on sites r and r′, while ⟨r, r′⟩
denotes the summation over nearest neighbors only. A
total number of sites is equal to N and the boson num-
ber operator n̂(r) = â†(r)â(r). We concentrate on a ho-
mogeneous (translationally invariant) case, omitting the
e�ect of the external magnetic potential that is usually
superimposed on top of the optical lattice potential in
order to additionally trap the atoms. The Hamiltonian

(796)
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and its descendants have been widely studied within the
last years. The phase diagram and ground-state proper-
ties include the mean-�eld ansatz [11], strong coupling
expansions [12�14], the quantum rotor approach [15],
methods using the density matrix renormalization group
DMRG [16�19], and quantum Monte Carlo QMC simu-
lations [20�23].

3. Method

We start with the statistical sum of the system de-
�ned by Eq. (2) in a path integral form with use of
complex �elds a(rτ) depending on the "imaginary time"
0 ≤ τ ≤ β ≡ 1/kBT , (with T being the temperature)
that satisfy the periodic condition a(rτ) = a(rτ + β):

Z =

∫
[DaDa] e−S[a,a], (3)

where the action S is equal to:

S [a, a] =

∫ β

0

dτ

(
H (τ) +

∑
r

a (rτ)
∂

∂τ
a (rτ)

)
. (4)

The Bogoliubov approximation is based on the reduction
of many-body quartic Hamiltonian to a quadratic one,
which can be then diagonalized exactly. The bosonic
operator is split into a Bose condensate macroscopic oc-
cupation N0 = b20 and non-condensed �uctuation part
bd (r) [8]:

b(rτ) = b0 + bd(rτ). (5)

Substituting the Eq. (5) into the action and neglecting
the terms of the order higher than two in bd(r) operators,
we obtain:

S = S0 + S1 + S2, (6)

where S0, S1 and S2 are the zero, �rst and the second
order terms containing interactions within and between
both sub-systems (b0 and bd (rτ)). The value of b0 am-
plitude can be calculated in the saddle point:

∂S [b0]

∂b0
= −tz − µ+ U |b0|2 = 0, (7)

which results in:

|b0|2 = z
t

U
+
µ

U
. (8)

This implies that the linear term S1 = 0 and the bosonic
action is given by terms that are constant and quadratic
in bd (rτ ):

Sb

[
b, b
]
= S0 + S2. (9)

However, this approach is valid only in the weak-coupling
limit. In order to extend the description to the strong-
coupling limit that is governed by phase �uctuations, we
introduce the quantum rotor approach, which has already
been employed for the calculation of the phase diagram
of the cold bosons in optical lattice [6]. The fourth-order
term in the Hamiltonian in Eq. (2) can be also decoupled
using the Hubbard�Stratonovich (for details, see Refs. [6,
24]), which leads to introduction of new bosonic variables
that result from a local gauge transformation of original
ones:

a(rτ) = b(rτ)e iϕrτ . (10)

This transforms the strongly correlated bosonic system
into a weakly interacting bosons, submerged into the
bath of strongly �uctuating gauge potentials (which in-
teractions are governed by the high energy scale of U).
Due to transformation of variables the order parameter
is de�ned by:

ΨB = ⟨a(rτ)⟩ = ⟨b(rτ)⟩ψB. (11)

Super�uidity is obtained once both the amplitude ⟨b(rτ)⟩
is non-zero and the phase (rotor) variables become sti�
and coherent. This re�ects the fact that all the atoms in
the condensate have the same phase and form a coher-
ent matter wave. Thus the condensate possesses a well
de�ned phase associated with the concept of so-called
spontaneously broken U(1) gauge symmetry. The phase
order parameter is de�ned by:

ψB =
⟨
e iϕrτ

⟩
ϕ
, (12)

where ⟨. . . ⟩ϕ is averaging over phase action to be calcu-
lated later in this section.

After the variable transformations the statistical sum
becomes:

Z =

∫ [
Db̄Db

]
[Dϕ] e−S[b̄,b,ϕ], (13)

with the action:

S
[
b, b, ϕ

]
=
∑
r

∫ β

0

dτb (rτ)
∂

∂τ
b (rτ)

−t
∑

⟨r,r′⟩

∫ β

0

dτ
(
e− i(ϕ(rτ)−ϕ(r′τ))b (rτ) b (r′τ) + h.c.

)
+
∑
r

∫ β

0

dτ
(
U
⟨
b (rτ) b (rτ)

⟩
b
− µ

)
b (rτ) b (rτ)

+
∑
r

∫ β

0

dτ

(
1

2U
ϕ̇2(rτ) + i

µ

U
ϕ̇(rτ)

)
, (14)

which are used as a departure point for obtaining phase-
only action:

Sϕ [ϕ] = − ln

∫ [
Db̄Db

]
e−S[b̄,b,ϕ], (15)

with:

Z =

∫
[Dϕ] e−Sϕ[ϕ]. (16)

In order to calculate the phase-only action, we use the
following approximation:

a(rτ) = b(rτ)e iϕ(rτ) ≈ b0 e
iϕ(rτ), (17)

where b0 is static bosonic amplitude, which was calcu-
lated in the Bogoliubov approximation. The phase-only
action can be written explicitly:

Sϕ [ϕ] =

∫ β

0

dτ

(∑
r

(
ϕ̇2(rτ)

2U
+ i

µ

U
ϕ̇(rτ)

)
−J

∑
⟨r,r′⟩

cos
(
ϕ(rτ)− ϕ(r′τ)

))
, (18)

where J = t |b0|2 represents the sti�ness for the phase
�eld. Since, the phase action is non-linear in the phase
variables ϕ(rτ) and the statistical sum in Eq. (16) can-
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not be calculated exactly, we are bound to make further
approximations. First, we introduce a new uni-modular
collective �eld z(rτ) = e iϕ(rτ). Then, in order to make
to model solvable, we implement the constraint for z(rτ)
length that preserves uni-modularity only on average (see
Ref. [25]):

δ

(
N −

∑
r

z(rτ)z(rτ)

)

=

∫
dλeNλ−λ

∑
r z(rτ)z(rτ). (19)

This introduces a Lagrange multiplier λ. Substituting
the constraint into Eq. (16) and integrating by the cu-
mulant expansion over the phase variables, the partition
function reads:

Z =

∫
[DzDz] dλeNλ−Sz [z,z], (20)

In the thermodynamic limit (N → ∞), the integral (20)
can be performed exactly by the saddle-point method.
The quantum rotor action:

Sz [z, z] =
∑
⟨r,r′⟩

∫ β

0

dτ dτ ′
((
λδrr′ − tb20

)
δ (τ − τ ′)

+δrr′K−1 (τ − τ ′)
)
z(rτ)z(r′τ ′), (21)

where K−1 (τ − τ ′) is a phase correlator, which includes
dynamic e�ect of the U(1) phase �eld:

K−1 (τ − τ ′) =
⟨
e iϕ(rτ)− iϕ(rτ ′)

⟩
0
, (22)

with the average

⟨. . . ⟩0 =

∫
[Dϕ] . . . e−S0[ϕ]∫
[Dϕ] e−S0[ϕ]

, (23)

that is taken only over non-interacting quantum rotors:

S0 =
∑
r

∫ β

0

dτ

(
ϕ̇2(rτ)

2U
+ i

µ

U
ϕ̇(rτ)

)
. (24)

The Fourier transform of the correlator in Eq. (22) in the
zero-temperature limit reads:

K−1 (ωl) =
U

4
− U

(
v

(
µ

U

)
+

iωl

U

)2

, (25)

where the Bose�Matsubara frequencies are ωℓ = 2πℓ/β
and ℓ = 0,±1,±2, . . . . Furthermore, v (x) = x− [x]− 1

2 ,
and [x] is the �oor function, which gives the greatest in-
teger less then or equal to x. The function v (x) allows
to calculate the zero-temperature value of the correlator
without demanding summation over winding numbers.
The phase order parameter in the quantum rotor model
can be written as:

1− ψ2
B =

1

N

∑
r

∫ β

0

dτ ⟨z(rτ)z(rτ)⟩ , (26)

which �xes value of the phase order parameter ψB . The
Lagrange multiplier saddle-point value "sticks" at criti-
cality to the value λ0 given by

λ0 − J (k = 0) +K−1 (ωℓ=0) = 0, (27)

and obeys the Eq. (27) in the whole low temperature
ordered phase.

4. Correlation function and time-of-�ight

patterns

The correlation function in Eq. (1) can be written as
a product of two correlation functions of amplitude and
rotor �elds:

C (R) ≡ Cz (R)Cb (R) , (28)

where

Cz (R) ≡ Cz (rτ ; r
′τ) = ⟨z(rτ)z(rτ ′)⟩z ,

Cb (R) ≡ Cb (rτ ; r
′τ) =

⟨
b (r) b (r′)

⟩
b
, (29)

and R = r − r′ (since, the system is homogeneous, the
correlation function depends only on distance, not the
speci�c position of r and r′). The averagings appearing
in Eq. (29) are de�ned by:

⟨. . . ⟩z =

∫
[DzDz] . . . e−Sz [z,z]∫
[DzDz] e−Sz [z,z]

,

⟨. . . ⟩b =
∫ [

Db̄Db
]
. . . e−Sb[b,b]∫ [

Db̄Db
]
e−Sb[b,b]

, (30)

where Sz [z, z] and Sb

[
b, b
]
are given in Eqs. (21) and (9),

respectively. As a result, the correlation function in the
real space splits into a product of averages from bosonic
and phase sectors. The Green's function in the bosonic
sector results from the action in Eq. (9) reads:

Gb(kωm) = b20 +G22
bd(kωm), (31)

where:

Gbd(kωm) (32)

=

 2t(ε0−εk)+U |b0|2− iωl

E2
k
−( iωl)

2 − U |b0|2

E2
k
−( iωl)

2

− U |b0|2

E2
k
−( iωl)

2

2t(ε0−εk)+U |b0|2+iωl

E2
k
−( iωl)

2

 ,
and

Ek =

√
2t
(z
2
− εk

)(
2t
(z
2
− εk

)
+ 2U |b0|2

)
(33)

with a dispersion for a simple square lattice:

εk = cos (akx) + cos (aky) . (34)

On the other hand, the phase sector leads to the phase
Green's function resulting from rotor action in Eq. (21):

Gϕ(kωm) = ⟨z(kωm)z(kωm)⟩

=
1

λ0 − 2tb20εk +K−1 (ωm)
. (35)

As a result, the correlation function �nally reads:

C (R) = Gϕ (R)
(
|b0|2 +Gbd (R)

)
. (36)

The phase coherence properties of the cold atoms in op-
tical lattice resulting from their correlations can be ob-
served in time of �ight absorption images. In the su-
per�uid state the atoms are coherent, sharing the same
phase. As a result, after being released from the trap
and the optical lattice they preserve the coherence, which
manifests as coherence peaks on the time of �ight images
that re�ect the symmetry of the optical lattice. On the
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other hand, lack of long range order of the Mott insulat-
ing state results in broad blob-like maximum. To identify
the ordered state, we determine the the momentum dis-
tribution of particle number n (k), a quantity of basic
interest that encodes the strong correlations of the sys-
tem:

n (k) =
∑
R

C (R) e ikR. (37)

Since, in time of �ight experiments the expansion of the
atoms after being released from the trap is mostly bal-
listic, the momentum dependence of particle numbers is
maintained. In our theory, using the Eqs. (28)�(35), we
have:

n (k) =
⟨
a†k (τ) ak (τ)

⟩
= m0Gbd (k) + b0Gϕd (k)

+
1

N

∑
k′

Gbd (k
′)Gϕd

(
k − k′) , (38)

where:

Gbd (k) =
1

2

(
−1 +

2t (ε0 − εk) + n0U

Ek
coth

βEk

2

)
,

Gϕd (k) =

coth

(
βU
2

(
Ωk + v

(
µ
U

)))
4Ωk

+

coth

(
βU
2

(
Ωk − v

(
µ
U

)))
4Ωk

, (39)

with:

Ωk =

√
2
tb20
U

(ε0 − εk) + v2
(
µ

U

)
+
δλ

U
. (40)

The interference pattern observed after release of the
atom cloud from the optical lattice depends not only on
the momentum distribution of the particles, but also on
the geometry of the optical lattice. As a result, the den-
sity distribution of the expanding cloud after time t can
be represented as follows [26�28]:

n (r) =
(m
~t

)3
|W (k)|2 n (k)

∣∣∣∣
k=mr

~t

, (41)

where m is the atomic mass. The e�ect of the lattice
enters through W (k), which is the Fourier transform of
the Wannier function in the lowest Bloch band. Typi-
cally, the trapping potential is well approximated by a
harmonic function so that the envelope has the Gaussian
form:∣∣∣W (mr

~t

)∣∣∣2 ≈ 1

π3/2wt
exp

(
− r2

w2
t

)
, (42)

where wt = ~t/mw0 with w0 being the size of the on-site
Wannier function. Therefore, in order to compare the in-
terference pattern with experiments, we have to calculate
n (r). The results are presented in Figs. 1 and 2. In the
super�uid phase, the sharp peaks emerge denoting long-
range phase coherence. In the Mott phase, the momen-

Fig. 1. Simulation of time-of-�ight absorption images
(from. Eq. (41)) for various interactions strength
t/U : transition from super�uid (top-left, t/U = 0.085)
to Mott phase (top-right to the bottom-right t/U =
0.085, 0.07, 0.055, 0.04, 0.025, 0.01, respectively), for
µ/U = 0.5.

tum distribution becomes a broad, featureless maximum.
The data in Figs. 1 and 2 is presented in the scaled form
in the units of mr/~t. The results are in good agreement
with experimental �ndings.

5. Conclusions

In the present paper, we have studied the atom�atom
correlations of cold bosons loaded in a two dimensional
optical lattice. In the weak-coupling regime, the Bogoli-
ubov theory is valid (U/t≪ 1). In this approach, quasi-
particle states correspond to solutions of the approximate
Hamiltonian with a plane-wave character. However, as
interactions become stronger, the quantum correlations
become important and the exact eigenstates of the sys-
tem do not necessarily have the simple plane wave char-
acter any more. As a result, in the strong interaction
limit at a critical value of U/t the system exhibits tran-
sition from superfuid to Mott-insulator state. Since, this
transition is driven by phase �uctuations, we developed
an approach that goes beyond the simple Bogoliubov ap-
proach. It incorporates the phase degrees of freedom via
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the quantum rotor approach. We have separated the
problem into the amplitude of the Bose �eld and the �uc-
tuating phase that was absent in the original Bogoliubov
problem. Subsequently, the functional formulation of this
problem was shown to be a powerful tool that incorpo-
rates properly the interaction aspects characteristic of
the quantum phase dynamics. This formalism provides a
useful framework, where the one particle correlation func-
tions are treated self-consistently and permits us to test
and simulate Bose�Hubbard Hamiltonian with a whole
range of phenomena. Furthermore, we have calculated
atom-atom correlation functions and used them to deter-
mine the absorption images of time-of-�ight experiments.
We found that all the characteristic features visible in the
experimental results are present, namely sharp coherence
peaks in the super�uid state that change to a broad max-
imum in the Mott insulating state.

Fig. 2. Cross-section of the simulated time-of-�ight ab-
sorption images (from. Eq. (41)) for various interac-
tions strength t/U : transition from super�uid (top-left,
t/U = 0.085) to Mott phase (top-right to the bottom-
right t/U = 0.085, 0.07, 0.055, 0.04, 0.025, 0.01, respec-
tively), for µ/U = 0.5.
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