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In this brief overview we discuss the principal features of real space pairing as expressed via corresponding
low-energy (t�J or periodic Anderson�Kondo) e�ective Hamiltonian, as well as consider concrete properties
of those unconventional superconductors. We also rise the basic question of statistical consistency within the
so-called renormalized mean-�eld theory. In particular, we provide the phase diagrams encompassing the stable
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1. Introduction: appearance of strongly
correlated states and pairing by exchange

interactions
The analysis of the unconventional (non-BCS) super-

conductivity is essentially limited to that appearing in
the correlated fermion systems. We term the system cor-
related if the interaction magnitude between the parti-
cles V is comparable or larger to their single-particle (ki-
netic, band) energy EB . In the extreme situation when
|EB | ≪ V , we speak about the strongly correlated sys-
tems. Obviously, this simple theoretical criterion must be
translated into the speci�c experimental features distin-
guishing those systems from other normal metallic, mag-
netic, and superconducting systems.

First of all, the short-range strong repulsive Coulomb
interaction (as compared to the so-called bare single-
particle energy) will hamper the individual-particle mo-
tion, and hence increase largely its e�ective mass m∗,
which in turn, will show up in the strongly enhanced
value of the linear-speci�c heat coe�cient γ ∼ m∗. Also,
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the strong electron�electron interaction leads to the cor-
responding temperature (T ) dependence of the resistivity
ρ(T )−ρ(0) ≡ AT 2, since the coe�cient A ≈ (m∗)2. All of
these features appear already in the Landau Fermi-liquid
theory, together with an explanation of enhancement of
the Pauli susceptibility χ ≈ m∗ and in addition, with the
appearance of collective sound-like excitations.

The situation has changed decisively with the observa-
tion of a singular behavior of γ, χ, and A, but with the
ratio γ/χ remaining �nite, which appear near the metal-
insulator (Mott�Hubbard) transition. The transition is
associated closely with localization of correlated carriers
and is signaled additionally by the transition from the
Slater - to the Heisenberg-type of antiferromagnetic order-
ing. In such manner, the divergences on the metallic side
de�ne the borderline of the metallic-state stability. The
transition occurs for speci�c (odd) number of electrons,
e.g. for a half-�lled-band con�guration of starting elec-
trons, and thus those systems can be easily distinguished
from either the band or the Kondo-type insulators, for
which the fully-occupied bands have even number of elec-
trons, separated in each case by a gap from empty (con-
duction) states. Detailed studies of the Mott�Hubbard
systems near the metal-insulator transitions were carried
out in the seventies through the nineties of the XX cen-
tury [1]. They were subsequently supplemented with de-
tailed studies of orbital, charge, and stripe orderings in
various Mott insulators, i.e. the Mott�Hubbard systems
on the insulating side.
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The Mott�Hubbard metal�insulator transitions are
usually discontinuous, with isolated critical point
on the higher-temperature side (the classical critical
point) and a possible quantum critical point at the
antiferromagnetic-paramagnetic boundary [1]. In a sim-
ple modeling of this transitions, they are driven by a
competition between the single particle energy, as repre-
sented by band energy EB < 0 (per particle, e�ectively
characterized, by bare bandwidth W of fermions) and
the repulsive Coulomb energy V > 0 (represented by the
magnitude U of the intraatomic Coulomb interaction).
The physics, for given number of electrons n per active
atomic site, is characterized then by changing U/W ra-
tio (or e�ectively, by exerting external pressure which
reduces the U/W ratio). The situation is di�erent when
we have an orbitally degenerate system, still with one
electron per active band per site. For example, for n = 1
the corresponding Mott insulator may take the form of
a ferromagnetic insulator with an antiferromagnetic or-
bital ordering [2] or the state with orbital-selective metal-
insulator transition.

A basic question arises what happens if we vary the
electron concentration (the band �lling) instead of chang-
ing U/W ratio for given n. This situation is quite distinct
from that when changing U/W . This is because in the
situation with partial (non-half) �lling the metallic state
is stable even in the strong-correlation limit U/W ≫ 1, if
only the disorder e�ects associated with e.g. intentional
doping, do not induce the carrier localization of holes
or electrons in a weakly doped Mott insulator [3]. The
doped Mott insulators and the heavy-fermion systems
are exactly the systems of that type. While the high-TC

cuprates such as La2−xSrxCuO4 can be represented as
doped Mott insulator with concentration x . 0.3 of holes
per CuO2−

2 active unit, the cerium heavy-fermion stoi-
chiometric compounds such as CeAl3 or CeCoIn5 can be
regarded as almost localized systems with δ . 0.05 holes
in nominally Ce3+ 4f1 electronic con�guration (i.e. the
Ce valence is 3 + δ). In both systems the 3d (for the
cuprates) and the hybridized 4f�5d�6s (for the cerium
compounds) strongly correlated electrons are itinerant,
which may transform to the localized states under a mod-
erate change of stoichiometry, pressure or applied mag-
netic �eld. For both systems we assume that U/W ≫ 1
and x ≡ 1− n ≪ 1.

One may ask whether the clear borderline for the
change of behavior, corresponding to metal�insulator
transition, survives also for the doped systems. In other
words, whether there is a clear distinction between the
limit of weakly or moderately correlated fermions from
one side and the regime of strong correlations for n ̸= 1
from the other, when no metal-insulator transition can
occur. The general assumption usually made is that such
a dividing line indeed exists (albeit of a crossover type)
and this statement represents one of the fundamental hy-
potheses of the theory of strongly correlated systems, even
though its properties have not been proved convincingly.
In the case of the cuprates such a line can be drawn

on the temperature T -doping x plane and terminate at
the middle point x = xc1 ≈ 0.15, of the superconduct-
ing dome and separates a some sort of Fermi-liquid ex-
tends from that line to its upper-end concentration [3, 4]
x = xc2 ≈ 0.3. In the case of heavy fermion systems,
the existence of such line is suggested through the ap-
pearance of antiferromagnetism or metamagnetism in a
strong applied magnetic �eld or through the transition
to the �uctuating (mixed) valence state as a function of
pressure or else, to the localized moment regime with the
increasing temperature.
In our brief overview we assume that such (crossover)

line exists and thus limit ourselves to the analysis of nor-
mal and superconducting states in the limit of strong cor-
relations. This limiting regime is de�ned as the one, in
which the probability of double site (orbital) occupancy,
d2 ≡ ⟨ni↑ni↓⟩ is vanishingly small (so formally, d2 = 0).
This is also the limit, where we cannot start from the
Hartree�Fock representation of the electronic states as
the reference state for the further analysis. Instead,
we will start from the so-called statistically-consistent
Gutzwiller or Fukushima mean-�eld approach, devised in
our group in the last two years [5]. We regard this ap-
proach as the �rst consistent renormalized mean-�eld ap-
proach to strongly correlated fermionic systems, here em-
ployed to the description of superconducting state with
real space pairing.
One important point should be raised. Namely, the

pairing interaction is of real-space type and is driven by
the kinetic exchange interaction under the name of the t�
J model for a single narrow-band case and the Anderson�
Kondo model (or the t�J�V model) with the hybrid pair-
ing for a two-band situation. Both of these models were
introduced by the present author some time ago in the
context of magnetism and normal correlated states and
later extended to the description of superconductivity in
those systems [6, 7]. A somewhat more detailed personal
account, of the transformation to the corresponding ef-
fective Hamiltonians into forms expressing explicitly the
superconducting pairing, is provided in Appendix A.
The paper is organized as follows. In the next Section

we discuss the universal aspects of real space pairing,
namely the fact it is induced by a correlated motion of
pair of particles throughout the lattice. In Sect. 3 we
summarize the principal features of the so-called renor-
malized mean-�eld theory (RMFT) together with the
consistency conditions. Particular emphasis is put on
the phase diagram encompassing the unconventional su-
perconducting states. In Sect. 4 we overview selected
physical properties of the superconducting state and its
coexistence with magnetism. In such 4 we put into a
perspective the whole approach. Appendices A�E are to
provide details of the approach and to put it on a �rmer
formal grounds.
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2. t�J and Anderson�Kondo lattice models: real
space pairing

In this Section we overview brie�y the universal char-
acter of real space pairing, i.e. its applicability to both
high-TC and heavy-fermion systems. By the real space
pairing we understand a correlated electron-pair mo-
tion (hopping) of partners which are coupled by rather
strong exchange interaction (i.e. comparable on the
scale of the Fermi energy). The simplest model of one-
band strongly correlated metallic systems is the Hub-
bard model, whereas the Anderson-lattice model re�ects
the corresponding two-band situation when the starting
atomic (say 4f) electrons are hybridized with the uncor-
related band (5d�6s) conduction electrons. Some time
ago [6, 7] both of these models were transformed out by us
to the form expressing explicitly the strong correlations,
on the low-energy (thermodynamic) scale, by projecting
out in a precise manner the doubly occupied atomic con-
�gurations and in this manner reducing the e�ect of the
strong intraatomic Coulomb repulsion by replacing them
with dynamic e�ects on the low-energy scale. Below we
summarize brie�y each of the two above models.

2.1. t�J model and its extension

Let us start from the extended Hubbard Hamiltonian
for a single narrow band of s-type:

H =
∑
ijσ

′
tija

†
iσajσ + U

∑
i

ni↑ni↓ +
1
2

∑
ij

′
Kijninj ,(1)

where the primed summations mean that we take only
i ̸= j terms in both the hopping (the �rst) and the in-
tersite Coulomb (the third) terms. The second term is
the celebrated Hubbard term representing the energy in-
crease when the site (Wannier) state is doubly occupied.
The principal feature here is that the Coulomb repulsive
interactions are developed systematically and express re-
spectively the interaction between two electrons on the
same site (with magnitude U) which represents (by far)
the largest energy scale, as well as between the electrons
on neighboring sites i ̸= j, with magnitude Kij and ne-
glect all more distant, interactions, since we assume that
Wannier states are strongly localized (the tight-binding
approximation). In other words, this atomic representa-
tion di�ers drastically from the concept of a lattice elec-
tron gas as a starting point, since the long-range nature
of the repulsive Coulomb interaction is cut o�. The deci-
sive step was taken [6] to derive an e�ective Hamiltonian
out of (1) expressing low-energy dynamics, i.e. which
contains high-energy processes as virtual transitions in
the second order order. The resultant e�ective Hamilto-
nian in the lowest Hubbard band is:

H̃ =
∑
ijσ

′
tijb

†
iσbjσ +

∑
ijσ

′ 2t2ij
U −Kij

(Si · Sj − 1
4
νiνj)

+
∑
ijkσ

′′ tijtjk
U −Kij

(
b†iσνjσ̄bkσ − b†iσS

σ̄
j bkσ̄

)
+ 1

2

∑
ij

′
Kijνiνj . (2)

The double-primed summation means i ̸= j ̸= k ̸= i.

The projected fermion operators are: b†iσ ≡ a†iσ (1− niσ̄),

bjσ ≡ ajσ (1− njσ̄), νiσ ≡ b†iσbiσ, νi =
∑

σ νiσ, and

Si ≡ (Sσ
i , S

z
i ) ≡

(
b†iσbiσ̄, (νi↑ − νi↓) /2

)
. We see that

apart from a restricted (projected) hopping, with no dou-
ble occupancies present, we have also present an antifer-
romagnetic kinetic exchange interaction with exchange
integral Jij ≡ 4t2ij/(U − Kij) [8] (the second term),
here generalized to the case of itinerant fermions, since
the spin operators are explicitly expressed in terms of
fermionic operators. The third term describes three-site
hopping processes, and the last � the residual repulsive
intersite Coulomb interaction. The dynamical processes
in the second order, taken into account in (2) are shown
in Fig. 1. We also included there the renormalized single-
particle hopping.

Fig. 1. Top: schematic representation of the Hubbard
subbands. The virtual hopping processes correspond to
the virtual transitions lower → upper → lower Hub-
bard subbands (process (a)). Bottom: three possible
intersite hopping processes (in real space) determining
the dynamics of Hamiltonian (2) in the lower Hubbard
subband (i.e. for the band �lling n ≤ 1): (a) virtual
hopping between single occupied neighboring sites that
leads to their antiferromagnetic (kinetic) exchange in-
teraction; (b) single-particle hopping between the single
occupied and the empty sites; and (c) three-site hopping
between the singly occupied and the empty site via an
intermediate single occupied site with opposite spin.

One has to mention that the projected fermion op-

erators {biσ} and {b†iσ} do not obey the usual fermion
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anticommutation relation, as we have that

{biσ, b†jσ′} = δij
(
(1− niσ̄) δσσ′ + Sσ̄

i (1− δσσ′)
)
,

{biσ, bjσ′} = 0. (3)

This last property creates a basic formal complication,
as we are working now with projected fermion operators.
We can say that the e�ective model represents, in prin-
ciple a fermionic quantum liquid, which is not a Lan-
dau Fermi-liquid (usually termed imprecisely as: non-
Fermi-liquid). As a �rst approximation, we discuss in
the next Section an e�ective (almost localized) Fermi-
liquid and demonstrate the usefulness of the approach as
a renormalized mean �eld theory. Note that the Hamil-
tonian (2), is valid for the band �lling n ≤ 1. It can be
easily extended to the situation when n ≥ 1 by employing
the hole language.

The model (2), mainly in the limit of Kij ≡ 0, was
used to discuss the magnetic, charge�density, and mixed
(stripe) phases. However, a new impetus to study the
model was the idea [3], that the t�J model (i.e. Hamil-
tonian (2) with Kij ≡ 0) can be used to describe the
so-called real space pairing. The real-space pairing oper-
ators may be de�ned in the following manner{

B†
ij ≡ 1√

2

(
b†i↑b

†
j↓ − b†i↓b

†
j↑
)
,

Bij ≡ 1√
2

(
bi↑bj↑ − bi↑bj↓

)
.

(4)

In this manner, both two- and three-site terms can be
recast to the closed form and the e�ective Hamiltonian
transforms to the form

H̄ =
∑
ijσ

′
tijb

†
iσbjσ −

∑
ijk

′ 2t2ij
U −Kij

B†
ijBkj

+ 1
2

∑
ij

′
Kijνiνj , (5)

where now both the terms with k = i and k ̸= i are
incorporated into the second term. The expressions (4)
represent the projected spin-singlet creation and annihi-
lation operators located on the pair of sites (i, j) with

i ̸= j, since B†
ii = Bii ≡ 0. Hence, no ionic mixture to

such two-site spin-singlet state appears. Also:

B†
ijBij ≡ − (Si · Sj − 1

4
νiνj) , (6)

i.e. the "number operator for local singlets" is equiva-
lent to the generalized Dirac exchange operator (r.h.s.).
In other terms, the description in terms of itinerant-spin
interaction language is equivalent to the description in
terms of local ⟨i, J⟩ itinerant-spin singlet. In the other
words, the antiferromagnetic ordering coming from the
kinetic exchange interaction and the kinetic-exchange or
real-space singlet pairing should be regarded as equiva-
lent ways of describing the interaction, i.e. express a dif-
ferent type of ordering, which should be treated on equal
footing. What is even more important, such paired state
is directly included by the correlated motion of those sin-
glet pairs, as discussed below.

One general remark is in place here. The operators

B†
ij and Bij express explicitly the singlet nature of the

pairs if ⟨B†
ij⟩ ̸= 0. Normally, one operates only with

either ⟨c†i↑c
†
j↓⟩ or alternatively, with ⟨c†i↓c

†
j↑⟩ [16]. But

then, one implicitly assumes that ⟨c†i↑c
†
j↓⟩ = −⟨c†i↓c

†
j↑⟩.

Strictly speaking, this relation should be checked out ex-
plicitly, e.g. evaluating those two averages separately.
Nota bene, this explicit checkout helps in distinguishing
between the singlet pairing and the triplet pairing (both
components with Sz = 0). Namely, in the latter case

⟨c†i↑c
†
j↑⟩ = +⟨c†i↓c

†
j↓⟩. The spin nature of real-space pair-

ing is particularly obscured, if we consider the coexistence
between magnetism and superconductivity, as discussed
below.
Additional question is concerned with the presence of

the repulsive term ≈ Kij , which is usually neglected
in the analysis of high-temperature superconductivity
within the t�J model. Omission of this term is justi�ed
by the circumstance that is regarded as contributing only
the reference energy, i.e. is the same for the phases under
consideration. It may be also regarded as compensated
by the electron-lattice interaction which leads e�ectively
to Kij < 0 [17]. If this would be the case, then that the
pairing part induced by the case Jij does not lead to iso-
tope e�ect, whereas the part ≈ Kij < 0 does. Since the
isotope e�ect in high-Tc system is small, it means that
the kinetic exchange part of pairing in dominant.

2.2. Hybrid (Kondo-type) pairing in Anderson-lattice
model

The Anderson-lattice model represents the simplest
two-orbital model with a coherent mixture (hybridiza-
tion) of strongly correlated and uncorrelated electrons.
It is the canonical model of heavy-fermion system if the
orbital degeneracy of e.g. 4f1 electronic con�guration of
Ce3+ ions is not crucial (e.g. the lowest double Γ7 is the
only important crystal-�eld level which hybridizes with
conduction electrons originating from the 5d�6s itinerant
states). The starting Hamiltonian has the following form
in the site (Wannier) representation:

H =
∑
mnσ

′
tmnc

†
mσcnσ + ϵf

∑
iσ

Niσ + U
∑
i

Ni↑Ni↓

+
∑
imσ

(
Vima†iσcmσ + V ∗

imc†mσaiσ

)
+Ufc

∑
im

Ninm, (7)

where (i, j) label starting atomic (a) states, (m,n) label
starting delocalized (conduction, c) states, and Niσ ≡
a†iσaiσ. Vim represents the hybridization matrix ele-
ment. The strongly-correlated aspect shows up through
the circumstance that both |Vim| and |tmn| ≪ U , but
the position of the atomic level ϵf ≈ Vim, so not the
whole hybridization term can be transformed out via the
Schrie�er�Wol�-type of transition to the Kondo lattice
type of model [7, 19]. Only the Ufc = 0 case is consid-
ered below.
To adopt the model to the situation with strong corre-

lations, one performs the transformation, in which as in
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the narrow-band case, the double occupancies of atomic
states are excluded and replaced by the virtual processes
leading among others to the Kondo interactions between
the electrons of the two subsystems [7]. Explicitly, the
full e�ective Hamiltonian in the second order in V/U and
representing the low-energy dynamics, takes the form:

H̃ =
∑
mnσ

′
(
tmnc

†
mσcnσ −

∑
i

V ∗
imVmi

U + ϵf
νiσ̄c

†
mσcnσ

)
+
∑
iσ

ϵfνiσ +
∑
imσ

Vim

(
b†iσcmσ + h.c.

)
+
∑
im

2|V ∗
im|2

U + ϵf
(Si · sm − 1

4
νinm)

+
1

U + ϵf

∑
imnσ

VmiV
∗
in

(
Sσ̄
i c

†
mσ̄cnσ + νiσ̄c

†
mσcnσ

)
, (8)

where νiσ ≡ b†iσbiσ ≡ a†iσaiσ (1−Niσ̄), and sm ≡
(sσm, szm) ≡

(
c†mσcmσ̄, (nm↑ − nm↓)/2

)
.

The important point to note is that in this Hamil-
tonian we have both antiferromagnetic Kondo coupling
with the exchange constant Jim ≡ 2|Vim|2/(U + ϵf )
and the residual hybridization in the projected subspace,

≈ (Vimb†iσcmσ + h.c.). In this manner, the itineracy of
f electrons is explicitly expressed unless there is a phase
transition to the localized Mott state for f electrons (i.e.
to the state with ⟨νi⟩ = 1, see below). The dynamic
(virtual) processes in the second order and taken into ac-
count in the e�ective Hamiltonian (8), are displayed in
Fig. 2. There, we also show explicitly the remaining pro-
cesses: hoping in the conduction band and the e�ective
f -electron hopping (the bottom most part). The sec-
ond important point is, that in analogy to the real-space
spin-singlet pair operators (5), we can introduce the hy-
brid (Kondo-type) pair operators, namely de�ne:{

b†im ≡ 1√
2

(
b†i↑c

†
m↓ − b†i↓c

†
m↑
)
,

bim ≡ 1√
2

(
bi↓cm↑ − bi↑cm↓

)
,

(9)

and rewrite the Hamiltonian in a more closed form, at
least when Vim = V ∗

im, and we neglect the second order
contribution to the hopping (the second part in the �rst
term of (7)). We obtain then

H̃ =
∑
mnσ

′
tmnc

†
mσcnσ + ϵf

∑
iσ

νiσ

+
∑
imσ

Vmi

(
b†iσcmσ + c†mσbiσ

)
−
∑
imn

2VimVin

U + ϵf
b†imbin. (10)

Note that, in analogy to (6) we have now

b†imbim = − (Si · sm − 1
4
νinm) , (11)

i.e. both the Kondo interaction and the hybrid singlet
pairing in real space appear on the same footing. Both
processes are characterized by the Kondo exchange in-
tegral JK

im = 2|Vim|2/(U + ϵf ). This is the Anderson�
Kondo Hamiltonian capable of describing both the itiner-

Fig. 2. Top: schematic representation of
hybridization-induced process as f -level occupa-
tion dependent hopping process and its division into
the low- and the high-energy processes. The former (I)
corresponds to the presence of the residual hybridiza-
tion term in (8); the other (II) leads to the Kondo-type
coupling which in turn is expressed as a real-space
hybrid pairing in (11) in the second order in V/ϵf .
Bottom: the possible interband hopping process in real
space involving virtual hopping process to the double
occupied f -level (a), the three-state (site) hopping
process (b) and (c) � 2 and 2' alternative steps. The

arrow (labels) by t̃ij represents the resulting intersite
f�f hopping process.

ant nature of the heavy-f electrons and their localization,
as well as the hybrid (Kondo) paired state in the limit
of strong correlations among the hybridized fermions.
By analogy with t�J model (5), the one represented by
Hamiltonian (10) can be called the t�J�V model. Also,
when going to the higher, fourth order in Vim/(U + ϵf ),
we can include additionally the f�f pairing via the term

≈ V 4/(U + ϵf )
3B†

ijBkj . In e�ect, both the (orbital se-

lective) localization of f electrons, as well as a two gap
superconducting state are encompassed as limiting cases
of this coherent quantum liquid composed of two sets of
hybridized fermions.

To summarize this Section, the formal expressions
of the kinetic exchange and of the Kondo interaction
through the same type of real space pairing operators il-
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lustrates the universality of the pairing in both the Mott�
Hubbard and heavy-fermion systems. Obviously, the
practical usefulness of the pairing concept is proved only
by showing the stability of the corresponding magnetic
and superconducting states induced by this unconven-
tional forms of pairing. In the next Section we summa-
rize formulated by us [5, 19] the statistically-consistent
renormalized mean-�eld theory, as well as present some
exemplary results.

3. Renormalized mean-�eld theory: statistically
consistent approach (RMFT�SCA)

3.1. Gutzwiller approximation with
statistical-consistency conditions (SGA) for the Hubbard

model

The above Hamiltonians have a complex form, since
they contain the projected fermionic operators (i.e. com-
posite fermion operators with non-fermion anticommu-
tation relations). The question is how to diagonalize
Hamiltonian containing such operators, at least in an ap-
proximate and consistent manner, so one has the con�-
dence of having a well de�ned mean-�eld approach. Par-
enthetically, note that by making the canonical trans-
formation we include a certain class of higher-order dy-
namical processes automatically. Hence, a relatively sim-
ple approximation (of the Hartree�Fock type) on the
e�ective-Hamiltonian level includes, at least partially,
those higher-order dynamic processes. Therefore, instead
of rigorous solution impossible to attain for many-particle
correlated systems with spontaneous symmetry break-
down, we develop consistency check for approximate so-
lution at hand.
Actually, we can do a bit better than just carrying out

the Hartree�Fock type decoupling in the e�ective Hamil-
tonian. Namely, the name of the game is the renormaliza-
tion of the e�ective Hamiltonian combined with a subse-
quent Hartree�Fock decoupling of the many-body parts
still remaining. This procedure is not systematic in the
same sense, as the canonical perturbation expansion pre-
sented in the preceding Section, but it is in our view, in
accordance with our physical intuitive insights into the
nature of strong correlations.
Probably, the simplest nontrivial approach to the de-

scription of a correlated state is the Gutzwiller approach,
discussed here in its still simpler form of a Gutzwiller
ansatz. It relies on a variational approach by postulating
the corresponding macroscopic (N -body) wave function
|Ψ⟩ and a subsequent approximate combinational evalu-

ation of the relevant averages appearing in ⟨Ψ |H̃|Ψ⟩ and
in ⟨Ψ |Ψ⟩. The wave function respects the exclusion of
the double occupancies in real space, in an approximate
manner though. An altered approximation scheme has
been introduced subsequently by Fukushima [10] who in-
troduced additional variational parameters, the so-called
fugacity factors, which guarantee that expectation val-
ues of the number of particles in the uncorrelated and
correlated states are equated as the same.

In the Gutzwiller approximation the postulated wave
function has the form

|Ψ⟩ =
∏
i

(
1− (1− g)ni↑ni↓

)
|Ψ⟩ ≡ PG|Ψ0⟩, (12)

where |Ψ0⟩ represents the Fermi sea of uncorrelated (usu-
ally noninteracting) electrons, and g is a variational pa-
rameter equal to zero when the double occupancies are
excluded. By applying this type of wave function to
the narrow-band Hamiltonian, we can obtain the ground
state energy EG/N per site of the spin polarized state in
the form

EG

N
=
∑
σ

qσ (d, nσ) ϵ̄σ + Ud2, (13)

where d2 ≡ ⟨ni↑ni↓⟩, ϵ̄σ is the average band energy of
particles with spin σ (per site), nσ is the corresponding
average number of particles with spin σ, and

qσ =

[√
(nσ − d2) (1− n+ d2)

+
√
d2 (nσ̄ − d2)

)2/
nσ (1− nσ) , (14)

is the so-called band narrowing factor which represents a
renormalization factor, 0 ≤ qσ ≤ 1, of bare band energy
under the in�uence of correlations (in the Hartree�Fock
limit d2 = ⟨niσ⟩⟨niσ̄⟩ or equivalently, qσ = 1). Alterna-
tively, one can write down (13) as an expectation value
for the bare wave function |Ψ0⟩ of the following e�ective
single-particle Hamiltonian [11]:

HGA =
∑
ijσ

qσ(n, d,m)tijc
†
iσcjσ +NUd2, (15)

where m =
∑

σ σnσ is the spin magnetic moment per
site. This e�ective Hamiltonian contains two terms: the
renormalized hopping and the expectation value of the
Hubbard term. The replacement of the Hubbard term by
its expectation value means that we consider the single-
particle propagation in a frozen con�guration of the dou-
ble occupied sites, which at the end is optimized by min-
imizing EG with respect to d.

Hamiltonian (15) can thus be easily diagonalized and
the corresponding free-energy functional F constructed
in the standard manner has the form:

F (GA) = −kBT
∑
kσ

ln

(
1 + e−β(Ekσ−µ)

)
+NUd2

+µN . (16)

The quantities m and µ can be calculated either by min-
imizing this functional for selected n, T , and U/W or al-
ternatively, by writing down selfconsistent equations for
them, i.e.

n =
1

N

∑
kσ

⟨a†kσakσ⟩; m =
1

N

∑
kσ

σ⟨a†kσakσ⟩. (17)

Obviously, ⟨a†kσakσ⟩ ≡ n̄kσ is the average occupancy �
the Fermi function.

In the executing of either of the two above procedures
one can show explicitly that they do not yield the same
results. This means that the fundamental principle of
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Bogoliubov, which holds for the Hartree�Fock approxi-
mation, is not obeyed here. This problem can be traced
to the presence of renormalization factor qσ in either EG

or F , since then
∑

kσ
∂qσ(n,m,d)

∂m ϵk⟨nkσ⟩ ̸= 0. This very
important di�culty has been omitted in almost all papers
utilizing the Gutzwiller approximation.
To overcome this di�culty, we have proposed [5] that

the renormalized Hamiltonian (15) has to be supple-
mented with additional constraints, expressed with the
help of Lagrange-multiplier method when calculating the
averages of the type (17), providing an appropriate con-
dition minimum of thus corrected Landau functional F .
Note that such modi�cation will concern any renormal-
ized in this manner mean-�eld Hamiltonian (e.g. the
above t�J or Anderson�Kondo models) as it contains
nonanalytic renormalization factor qσ. In this manner,
the statistical consistency of the whole approach (in this
sense of a correct statistical physics) is guaranteed, i.e.
the self-consistent equations and the variational mini-
mization provide the same results. Explicitly, in the sit-
uation when we consider normal state, i.e. when only m
and µ (or m and n) appear as a thermodynamic vari-
ables, we de�ne now the e�ective Hamiltonian as follows

H̃ ≡ HGA − λm

(∑
kσ

σnkσ −
∑
kσ

σ⟨nkσ⟩
)

−λn

(∑
kσ

nkσ −
∑
kσ

⟨nkσ⟩
)
, (18)

where the Lagrange multipliers λm and λn play the role of
extra (global) molecular �elds to be calculated also from
the corresponding minimum condition for F , what guar-
antees automatically the statistical consistency as one
can see by imposing ∂F/∂λm = ∂F/∂λm = 0.
One should note that the variational parameter d is

not a thermodynamic variable, so the corresponding con-
straint does not appear. Nonetheless, in such modi�ed
formulation all the variables appearing in (16) are calcu-
lated variationally and thus the approach becomes self-
consistent and self-contained. For the sake of simplicity
we do not elaborate in detail of the approach using the
Fukushima approach [13�15]. However, we discuss some
of the results obtained by using this particular method.

3.2. Statistical consistency for t�J model and
Fukushima variational wave function (SCA)

The statistical consistency conditions have been im-
plemented practically simultaneously to the two models
interesting us in the context of unconventional supercon-
ductivity: the extended t�J model with real space pairing
induced by the antiferromagnetic kinetic exchange [5, 13,
14] as well as to the Anderson�Kondo model with hybrid
real space pairing induced by the Kondo coupling [15,
19]. Both of these types of pairing have been introduced
in the preceding Section.
The situation in the t�J model has been additionally

modi�ed by taking into account a modi�ed Gutzwiller-
type wave function introduced by Fukushima [10]. In the

latter approach, the Gutzwiller wave function (12) in the
strong-correlation limit (g = 0) is replaced by

|ΨF ⟩ =
∏
i

(λi↑)
ni↑/2 (λi↓)

ni↓/2 (1− ni↑ni↓) |Ψ0⟩

≡ PF |Ψ0⟩. (19)

Such modi�cation of the Gutzwiller projector PG al-
lows us imposing the condition, that uncorrelated average
number of electrons per site (on each site "i") and with
spin is equal the corresponding actual average computed
within the scheme. In other words,

⟨niσ⟩F = ⟨niσ⟩, (20)

where subscript "F" mean evaluation with the wave
function (9). This conditions represent additional self-
consistency requirement. In e�ect, as well will see, some
of the renormalization factors are the same, some are dif-
ferent.

Two important practical points concerning this method
should be emphasized. First, since the ground state en-
ergy is expressed as

EG ≡ ⟨ΨF |H̃|ΨF ⟩
⟨ΨF |ΨF ⟩

, (21)

and |Ψ0⟩ represents an uncorrelated state, the multiple-
fermion-operator expectation values contained in (20)
can be evaluated by factorizing them into those contain-
ing only pairs of operators, each evaluated for uncorre-
lated state (a Wick-type contraction!). This is somewhat
cumbersome procedure, so we present only the �nal re-
sult:

λiσ =
1− ⟨niσ⟩
1− ⟨ni⟩

, (22)

as well as the form of the e�ective t�J Hamiltonian:
≈
H=

⟨Ψ0|PF H̃PF |Ψ0⟩
⟨Ψ0|P 2

F |Ψ0⟩

−
∑
i

λ
(n)
i

(∑
σ

a†iσaiσ −
⟨
a†iσaiσ

⟩)

−
∑
⟨ij⟩σ

λ
(χ)
ij

((
c†iσcjσ − χij

)
+ h.c.

)
−
∑
⟨ij⟩σ

λ
(∆)
ij

(
(ciσ̄cjσ −∆ij) + h.c.

)
, (23)

where the e�ective t�J Hamiltonian SCA H̃ is expressed
by a corresponding expression SCA, which will not be
reproduced in detail here (see [13]). However, on should
note that in (23) we take in this method an expectation

value of ⟨H̃⟩. Thus the operator part of the Hamiltonian
≈
H is composed of the constraints. Such trick is analogous
to that leading to the e�ective single-particle Hamilto-
nian (17), where the expectation value of the interaction

part is taken. Note also, that we evaluate ⟨PF H̃PF ⟩; as
well as ⟨P 2

F ⟩ as expectation for the noninteracting state
|Ψ0⟩. So, we can utilize the Wick-type factorization of
the operators in the real space representation.
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3.3. Statistically consistent approximation for the
Anderson�Kondo lattice model

Very recently, we have extended [19] the Fukushima
approach to the periodic Anderson�Kondo Hamilto-
nian (10). First, we have extended our former results [20]
for heavy-fermion systems to the case with nonzero ap-
plied magnetic �eld. Second, the work is progressing on
the hybrid real-space pairing and its coexistence with
magnetism. The latter work [21] extends our earlier work
on unconventional superconductivity with hybrid pairing
in a lower hybridized band and in the Gutzwiller approx-
imation. This work will be elaborated elsewhere [15, 19].
Also, it would be desirable to analyze high-temperature
superconductivity within d�p hybridization included ex-
plicitly and within the SCA approach.

3.4. Statistically consistent approximation: a brief
outlook

It is very important to note that the constraints in-
troduced and composing an essence of the SCA scheme
are the same, at least for the normal state, with the
more involved auxiliary (slave)-boson type of approach
in the saddle-point approximation [5]. However, our ap-
proach contains no auxiliary ("ghost") Bose condensed
�elds, which introduce spurious phase transitions. Sec-
ond, the present approach is quite natural on physical
grounds, as well as extends the long tradition of intro-
ducing a molecular �eld as a conjugate variable to each
introduced order parameter, here in the situation with
a complex ordering. Also, as one can see already from
the complex form of the mean-�eld Hamiltonian, that it
represents a quantum liquid state intermediate between
the Landau Fermi-liquid state and what is called a non-
Fermi -liquid state, in addition to providing the Mott or
selective-orbital-Mott localized states, as quite unconven-
tional, as we discuss it elsewhere.
In summary, the SCA incorporates the slave-boson

approach into a statistically-consistent single-particle
mean-�eld theory with a complex formal structure in-
volving a number of order parameters and associated
with them mean �elds. Once the form of a variational
wave function is selected, all the remaining analysis can
be systematic in the sense of many-particle perturbation
theory [22].

4. Physical properties: superconducting and
magnetic states

The most important feature of any theory is to provide
a quantitative, or at least a coherent semiquantitative,
description of the relevant electron states and properties
and in particular, a phase diagram involving physically
plausible phases that given fermionic model allows for, at
least in the in mean-�eld approximation. Below we char-
acterize separately recent results for the t�J model and
for the hybridized (two-orbital) Anderson�Kondo model,
in both cases involving the stable phases.

4.1. High-temperature, single plane superconductivity
within t�J model in SCA approximation

To determine the role of di�erent terms we rewrite the
Hamiltonian (2) in the following form

H̃t−J ≡
∑
ijσ

′
tijb

†
iσbjσ +

∑
⟨ij⟩

JijSi · Sj

−c1
4

∑
⟨ij⟩

K̃ijνiνj + c2H3, (24)

where c1 = c2 = 1 and K̃ ≡ Jij − 4Kij , Jij =
4t2ij (U −Kij), H3 represents the three-site terms, and
⟨ij⟩means the summation over nearest neighboring pairs,
each taken once. The factor c1 and c2 have been intro-
duced to di�erentiate between the various contributions
to the paired state energy. Also, we consider here only the
case with Kij ≡ 0, i.e. neglect the intersite part of the
repulsive Coulomb interaction. The rationale behind the
last assumption is that, since we consider a correlated-
pair motion as the source of pairing, the repulsive contri-
butions is only one of the contribution, not the decisive
one. Additionally, we discuss here only the �nal results,
as the formal analysis has been elaborated in detail else-
where [13�15]. Let us mention only that the result can
be represented, by the Hamiltonian (24) reduced to the
renormalized form

H(ren)
t−J =

∑
ijσ

′
gtija

†
iσajσ +

∑
ij

′
g∆ijJij∆

∗
ij∆ij

+E0 + . . . , (25)

where gtij and g∆ij are the corresponding factors. The form

of gtij follows from a detailed procedure which leads to the
renormalized hopping in the correlated (|ΨF ⟩) state:

⟨a†iσajσ⟩C ≃
√

1− n̄i

1− n̄iσ

√
1− n̄j

1− n̄jσ

×
(
χijσ − χijσ̄

χijσχ
∗
ijσ̄ +∆ij∆

∗
ij

(1− n̄iσ̄) (1− n̄jσ̄)

)
, (26)

where χijσ ≡ ⟨a†iσajσ⟩ is the hopping amplitude in the
uncorrelated state and therefore for the paramagnetic

state with real gap parameter ∆ij ≡ ⟨c†iσ̄cjσ⟩ = ∆∗
ij we

have that

gtij =

√
1− n̄i

2

1− n̄i

√
1− n̄j

2

1− n̄j

×

(
1−

χ2
ij +∆2

ij(
1− n̄i

2

) (
1− n̄j

2

)) , (27)

and

g∆ij =

√
1− n̄i

2

1− n̄i

√
1− n̄j

2

1− n̄j

(
1 +

χ2
ij +∆2

ij(
1 n̄i

2

) (
1− n̄j

2

)) . (28)

Here n̄i ≡ ⟨ni⟩. These renormalization factors reduce to
the standard Gutzwiller-ansatz form for spatially homo-
geneous case, n̄i = n̄j = n. Here, to �rst approximation
gtij ≃ g∆ij , i.e. the formation of the pairing requires elec-
tron itineracy. Note, that strictly speaking
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ΨF

∣∣∣H̃t−J

∣∣∣ΨF

⟩
=
⟨
Ψ0

∣∣∣H̃(ren)
t−J

∣∣∣Ψ0

⟩
. (29)

Therefore, the exchange and other interaction parts not
written down explicitly, should be decoupled in the mean
�eld manner using all possible (assumed as nonzero) con-
tracted pair-operator averages. In e�ect, we can diago-
nalize thus approximated Hamiltonian (24) with the de-
coupled terms and supplemented with the constraints.
The resultant renormalized hopping amplitude Tτ and
the gap parameters Dτ in the τ -th direction of the lat-
tice, have the following forms:

Tτ ≡ tτg
t
τ + 3

4
Jτgτχτ + λ(χ)

τ , (30)

Dτ ≡ 3
4
Jτg

J
τ ∆τ + λ(∆)

τ , (31)

where we have included only the terms written down ex-
plicitly in (25). Also, we have assumed that χx = χy = χ
and ∆x = −∆y = ∆, the second relation being for the
superconducting gap of the d-wave form.

Fig. 3. Top: overall phase diagram for La2−xSrxCuo4
on the temperature T � doping x plane. Bottom: Dop-
ing dependence of the renormalized superconducting or-
der parameter ∆c. The curves 1�7 are explained in de-
tail in Ref. [11] and correspond to various methods of
solving Hamiltonian (2). The most important feature
of the solution is the appearance of the upper critical
concentration for the d-wave superconductivity disap-
pearance. The vertical line de�nes roughly the optimal
doping.

In Fig. 3a we plot the overall phase diagram for the
high temperature superconductor La2−xSrxCu4. The
corresponding theoretical phase diagram containing the
superconducting part of the phase diagram is exhibited in

Fig. 3b. Few features of theoretical phase diagram should
be noted. First, the superconducting disappears only in
the Mott insulating limit n → 1 (doping x ≡ 1−n → 0).
This inadequacy of our approach are caused by the cir-
cumstance, that we have not included in our analysis
either the onset of antiferromagnetism or the atomic dis-
order induced by the Sr doping. Second problem with
our approach is connected with the absence of the pseudo-
gap appearance. This is because we neglect here the phase
�uctuations of the order parameter ∆ij . Nonetheless, the
approach contains the two very attractive features. First,
we show clearly, that there exist an upper critical concen-
tration for the disappearance of superconductivity. The
various curves, which were calculated with di�erent ap-
proximations in the Hamiltonian (as discussed in detail
in [13]), show clearly that the upper critical concentration
is the doping regime x = 0.22�0.35, in agreement with the
experimental data for various single-plane cuprates. One
should state right away, that the existence of this critical
concentration speaks out decisively in the favor of real
space pairing, as with increase of doping the hopping in-
creases, which in conjunction with dilution electrons with
x destroys the correlated pair motion. Second, here we
have a well de�ned Fermi-liquid state, particularly in the
so-called overdoped regime (to the right of the vertical
line in Fig. 3b). The real space involves a correlated-pair
motion and has been animated by us recently [23]. To
put it bluntly, the pairing discussed here does not involve
any intermediate boson such as paramagnon. Finally, the
magnitude of the renormalized gap ∆c ≡ g∆⟨∆ij⟩ is in
the unit of the �rst hopping integral |t1| which is taken in
the range 0.35�0.40 eV (|t1|/J = 3 is assumed). There-
fore, the maximal value of ∆ ≈ 100�120 K is obtained
for the uppermost curve, a quite reasonable value in view
of the mean-�eld nature of our estimate. An elementary
interpretation of the superconducting "dome" shape de-
picted in Fig. 3 is based on the circumstance that here
renormalized hopping amplitude ≈ |t|x is comparable to
J [23].

Fig. 4. Doping dependencies of the SC gap Dk at k =
(π, 0) for cases 1�6 and for t′/t = −0.27, and J/|t| = 0.3
(�lled diamonds). Large �lled circles � experimental
data. For a detail discussion see Ref. [13].
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Fig. 5. Doping dependence of Fermi velocity in the
nodal ((0, 0) → (π, π)) direction. For a detail discus-
sion see Ref. [13].

In Figs. 4 and 5 we display respectively, the doping
dependence of the quasiparticle energy in the antinodal
direction (k = [π, 0]) and the Fermi velocity in the nodal
([0, 0] → [π, π]) direction. The points represent various
experimental results for the single-planar systems [13].
Our analysis represents a more precise version of that
presented in Ref. [14].
From Figs. 3�5 we can see that our results express in a

semiquantitative manner the trend of the corresponding
experimental data for overdoped systems (to the right of
the vertical line). However, it must be reiterated again,
that the phase diagram does not contain the crossover
(pseudogap) line, cf. Fig. 3b, as well as provide a wrong
tendency of the Fermi velocity vF , i.e. its almost constant
value in the underdoped regime. This most probably
means that pocket of Fermi surface (the arcs [25]) near
the nodal direction survive almost untouched in under-
doped regime. The situation in the underdoped regime
requires a generalization of the present SCA approach
(some hints to that generalization are provided in Ap-
pendix E).
One more interesting feature of our results should be

noted. Namely, the temperature dependence of the su-
perconducting gap magnitude ∆C ≡ ∆C(T ) follows to
a very good approximation the BCS dependence in the
version proposed by Rickayzen [26], which in our context

∆C(T )

∆C(0)
= tanh

(
∆(T )

∆(0)

TC

T

)
, (32)

with relative temperature t ≡ T/TC . The compari-
son our formula (32) is illustrated numerically in Fig. 6.
This is an amazing result given the complicated nature
of the self-consistent equations leading to the numeri-
cal results. For the sake of completeness we derive the
above equation in Appendix B. We also show there that
2∆C(0)/kBTC = 4.

Fig. 6. Reduced temperature dependence of renormal-
ized superconducting order parameter ⟨∆̂⟩C ≡ ∆C(T )
for various doping levels: squares: x = 0.125, solid cir-
cles: x = 0.25, diamonds: x = 0.3 are all for c1 = 1,
c2 = 0, and t′/t = −0.25. Solid line: BCS result (32).

4.2. t�J model: coexistence of magnetism and
superconductivity

A complete analysis of the t�J model requires determi-
nation of the Fermi surface evolution with doping within
this almost localized Fermi-liquid picture, along the lines
presented in [13]. Furthermore, one should incorporate
the magnetic phases into the phase diagram presented in
Fig. 3b. The last type of analysis has been performed
very recently [14, 18] and the results are presented in
Fig. 7, where the same type of approach as above has
been applied with one addition feature. Namely, a mix-
ture of the spin-singlet and the so-called staggered spin
triplet states appears when the antiferromagnetism co-
exists with superconductivity [27]. The appearance of
the triplet component of the gap is imminent in that
situation even though we have only the singlet-pairing
interaction or equivalently, when only the antiferromag-
netic exchange interaction in present. This is because of
the following reason, illustrated in Fig. 7. Namely, if we
have two-sublattice antiferromagnet, the pairing ampli-
tude ∆A ≡ ⟨ci↑cj↓⟩ between the spin majority electrons
sublattices (i ∈ A, j ∈ B) should be di�erent (larger)
than that on the corresponding quantity ∆B ≡ ⟨ci↓cj↑⟩
for the minority-spin electrons. Additionally, we would
like to describe the d-wave superconductivity, expressed
in the real-space language, which amounts to postulating
the following form of the gaps

∆ij ≡ ⟨cj↓ci↑⟩ =
{
τij∆A for i ∈ A

τij∆B for i ∈ B
, (33)

where τij = +1 for the n.n. pair ⟨ij⟩ along x and τij = −1
along y axis, respectively. One can note immediately,
that if ⟨cj↓ci↑⟩ and ⟨cj↑ci↓⟩ averages di�er in magnitudes,
then we can have a mixture of singlet and triplet pairing,
as in e.g. singlet-pairing case they would be of opposite
sign and for pure triplet the sign would be the same. In
e�ect, the unrenormalized gap parameter ∆ij can in the

present situation be decomposed into the singlet (∆
(S)
ij )

and the triplet (∆
(T )
ij ) parts according to a prescription
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Fig. 7. Spin-majority (blue, bigger arrows) and spin-
minority (red, smaller arrows) electron spins in a sys-
tem with the AF order and real-space superconducting
gaps. ∆A binds two spin-majority electrons, and ∆B

binds two spin-minority electrons and therefore, there
is a priori no reason for these two gaps to coincide (as
would be the case for no staggered π-triplet component).
In other words, the two distinct gaps make e�ectively
the ↑ − ↓ and ↓ − ↑ pairing components of the opposite-
spin pairs distinguishable.

∆ij = ∆
(S)
ij +∆

(T )
ij e iQ·Ri , (34)

with

∆
(S)
ij ≡ 1

2
(∆A +∆B) ,

∆
(T )
ij ≡ 1

2
(∆A −∆B) e

iQ·ri , (35)

where Q = (π, π) is the superlattice vector in the case
of simple two-sublattice AF ordering in two dimensions.
The amazing feature of the present representation of
the gap in the form (35) is that the triplet component
is present even though there is no explicit spin-triplet-
pairing inducing interaction in the Hamiltonian. The
detailed analysis has been performed in [14], where the
corresponding statistical-consistency constraints and the
minimization of the (appropriate free-energy) functional
has been carried out. One should note that in the present
situation we encounter, for the �rst time in this approach,
the spatially modulated occupancy, i.e. it has the form:

⟨niσ⟩ ≡ ⟨Ψ0|niσ|Ψ0⟩

= 1
2

(
n+ σmF + σmAM e iQ·Ri

)
, (36)

where, as before, n is the band �lling (0 ≤ n ≤ 1), mFM

is a ferromagnetic (homogeneous) spin-moment compo-
nent, and mAF is the antiferromagnetic (staggered, sub-
lattice) moment component. The results, encompassing
a simultaneous optimization of a system of 11 algebraic
equations for the case of square-lattice case, is shown in
Fig. 8 in the form of the phase diagram on the applied
magnetic �eld h (in units of |t|) � band �lling plane.
The microscopic parameters taken in that computation
are listed in that �gure.

Particularly interesting for us is the horizontal line,
where we observe the sequence of phases AF + SC →
AF → PP → FM with the decreasing band �ling. In a
way, the results are somewhat disappointing, as we would
rather expect, with the increasing n, a clear transition
from AF Mott insulating state to a pure superconducting
state. Here the coexisting phases AF + SC phase are
stable up to xc′ = 0.6, and the for x > xc the pure two-
sublattice AF state becomes stable.

Fig. 8. Phase diagram on the band �lling � magnetic
�eld plane. The phases are labeled as follows: AF+SC
� phase with coexisting superconductivity and antifer-
romagnetism, AF � antiferromagnetic phase, FM �
ferromagnetic phase, SFM � saturated ferromagnetic
phase (with mFM = n). For further analysis we restrict
ourselves to n = 0.97 as marked by the dashed vertical
line. No stable pure superconducting solution has been
found.

4.3. Fulde�Ferrell phase in narrow-band limit

In this Section we overview brie�y plausibility of the
observations of the Fulde�Ferrell phase in the strongly
correlated-electrons systems, as viewed from the point of
view of our SGA approach [28].

The Fulde�Ferrell�Larkin�Ovchinnikov (FFLO) was
proposed theoretically many years ago [29]. The mo-
tivation for our work in this area was the suggestion
that this state has been observed in the heavy-fermion
system CeCoIn5, possibly coexisting with antiferromag-
netism [30]. It was quite a coincident with the ex-
perimental observation of spin-dependent heavy electron
masses [31]. On one hand, the appearance of the spin-
dependent heavy electron mass was proposed earlier as
one of the crucial phenomena for the strong correlated
systems [32]. Therefore, a natural idea appeared to dis-
cuss the e�ect of the spin-dependent masses (SDM) on
the FFLO state stability. However, we discuss �rst brie�y
the concept of the spin-dependent masses.

4.3.1. Spin-dependent masses

For a quasiparticle gas of correlated particles, their en-
ergy in the applied �eld h ≡ 1

2
gµBHa, when the Landau

quantization is neglected, is expressed as [28]

ξkσ =
~2k2

2mσ
− σh− µ− σhcorr, (37)

where hcorr is the e�ective �eld induced by the correla-
tions and spin-dependent mass enhancement mσ/mB is
of the form in the limit of U → ∞ for a single narrow
band [31]

mσ

mB
=

1− nσ

1− n
=

1− n/2

1− n
− σ

m̄

2(1− n)
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≡ 1

mB

(
mav −

σ

2
∆m

)
, (38)

where mB is the bare (band) mass and m̄ = n↑ − n↓ is
here the system spin polarization. Also, ∆m = m↓ −m↑
is the mass di�erence, while mav = (m↑ +m↓) /2 is the
average quasiparticle mass, i.e. the mass in the absence
of magnetic polarization. It is interesting to note that in
the magnetic-saturation limit we recover the band limit
for the spin-majority subband, i.e. m↑/mB = 1, whereas
the heavy quasiparticles in the spin-minority band (with
m↓/mB = 1/(1−n)) disappear at the border of magnetic-
moment saturation m̄ = n. Two features are impor-
tant here: (i) the masses are high in the almost-localized
limit (1 − n) ≪ 1, and (ii) the mass m↓ in the spin-
minority band is the heaviest, since due to the spin sub-
band occupancy imbalance, these spin-minority quasipar-
ticles scatter very strongly (due to the presence of the
large-magnitude Hubbard term ≈ U

∑
i ni↑ni↓). Addi-

tional features follow from the circumstance that we can
"switch-o�" completely the Hubbard interaction by ap-
plying the magnetic �eld and saturating magnetically the
system. This is possible only (and is the case) because the
�eld induced by the correlations hcorr enhances strongly
the e�ect of applied magnetic �eld. In that situation a
metamagnetic transition takes also place [31].

The brief analysis provided above delineates the princi-
pal message about what we mean by nonstandard quasi-
particles in a (strongly) correlated system. First, they
can become quite heavy, i.e. mav/mB ≫ 1. Sec-
ond, they depend on the particle-spin direction, what
makes them distinguishable in the quantum-mechanical
sense, since the mass in nonrelativistic quantum mechan-
ics is an external (input) characteristic in the problem at
hand. Third, the e�ective �eld driven by the correla-
tions can become very strong, i.e. much stronger than
any Weiss molecular �eld appearing in traditional local-
moment magnetism. All these microscopic properties
must be determined self-consistently. These features of
those nonstandard quasiparticles distinguish them from
those are de�ned within the original phenomenological
Landau Fermi-liquid theory, where the enhancement of
the e�ective mass and of the magnetic susceptibility is ex-
pressed in terms of interaction parameters. Additionally,
in the Landau theory of Fermi-liquids the enhancement
factors are determined by including the interaction only
among the quasiparticles at and/or in close vicinity of the
Fermi surface. Here, all the particles mutually in�uence
each other, what is expressed via an integration over all
occupied states when solving appropriate self-consistent
equations. This is because in the present situation the
interaction is strong (at least comparable) to he Fermi
energy.

4.3.2. Superconducting state: Fulde�Ferrell�Larkin�
Ovchinnikov state

We describe next the Fulde�Ferrell�Larkin�
Ovchinnikov (FFLO) state for the model of heavy-
fermion system starting from Hamiltonian (D1) derived

in the Appendix D, with the hybrid pairing introduced
in the preceding Section.

In the standard BCS approximation with anomalous
averages, Hamiltonian (D1) in the narrow band limit re-
duces to the form

H =
∑
kσ

(ϵkσ − µ) f†
kσfkσ

− 1
2
gµBH

∑
k

(
f†
k↑fk↑ − f†

k↓fk↓

)
+
∑
k

(
∆∗

kQfk↑f−k+Q↓ + h.c.
)
+N

|∆kQ|2

V0
, (39)

with the single-particle energy parametrized in the tight-
binding approximation, which in the case of square lattice
takes the form

ϵkσ ≡ qσ
(
−2t(cos kx + cos ky) + 4t′ cos kx cos ky

)
,(40)

where t and t′ are the �rst and the second hopping inte-
grals and qσ is, as before, the Gutzwiller band narrowing
factor (the inverse spin-dependent mass enhancement).
The superconducting gap is thus determined from the
self-consistent equation

∆kQ = −V0

N

∑
k′

γkγk′⟨f−k′+Q↓fk′↑⟩. (41)

Additionally, V0 is the pairing magnitude which for the
constant hybridization has the magnitude

V0 ≃ −4V 2 (qσqσ̄)
1/2

ϵf + U
, (42)

and the factors γk and γk′ correspond to the separable
k-dependent factors in (D3) divided by V 2.

Next, we carry out the approximate form of the Bo-
goliubov transformation which in the meantime acquired
the name of the Bogoliubov�Valatin-de Gennes�Nambu
transformation! For that purpose we represent (29) in
the matrix form

H =
∑
k

(fk↑, f−k+Q↓)

×

(
ϵk↑ − gµBH − µ ∆k,Q

∆∗
k,Q −ϵ−k+Q↓ − gµBH + µ

)

×

(
fk↑

f−k+Q↓

)

+
∑
k

(ϵk↓ + gµBH − µ) +N
∆2

Q

V0
. (43)

The transformation to the quasiparticle representation
has the usual form(

α̃k

β̃†
k

)
=

(
uk vk
−vk uk

)(
fk↑

f†
−k+Q↓

)
, (44)

with the Bogoliubov coherence factors given now by the
relations
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Fig. 9. Phase diagram for the cases with the spin-
dependent (a) and the spin-independent masses (b).
Yellow region corresponds to Q = 0 (BCS phase), the
darker one to Q ̸= 0 (FFLO phase) and the white
to normal state. Note that with increasing tempera-
ture, the transition from BCS to FFLO state occurs at
higher �elds, in qualitative agreement with experimen-
tal results. The FFLO phase is stable in an extended
Ha�T regime only in the spin-dependent-masses (SDM)
case [28].

uk = (45)√√√√√1

2

(
1 +

ϵk↑ + ϵ−k+Q↓ − 2µ√
(ϵk↑ + ϵ−k+Q↓ − 2µ)2 + 4∆2

kQ

)
,

vk = (46)√√√√√1

2

(
1− ϵk↑ + ϵ−k+Q↓ − 2µ√

(ϵk↑ + ϵ−k+Q↓ − 2µ)2 + 4∆2
kQ

)
.

The quasiparticle energies in the phase with Q ̸= 0 are

EkQα = 1
2
(ϵk↑ − ϵ−k+Q↓)− gµBH

+α 1
2

(
(ϵk↑ + ϵ−k+Q↓ − 2µ)

2
+ 4|∆kQ|2

)1/2
, (47)

where sign factor α = ± corresponds to the electron or
hole excitations, respectively.
Having discussed the explicit expression for the

fermionic quasiparticle excitations, we can construct the
free energy functional, as well as determine the system
of self-consistent equations for ∆kQ, µ, and m̄; we also
optimize the energy with respect to the magnitude of
the wave vector Q [33]. One should mention that for
the electron-gas situation we have included explicitly in
the e�ective Hamiltonian also the correlation �eld hcorr,
which we optimize, whereas for the two-dimensional band
structure (40) we have been able so far to carry out only
the whole analysis in the Gutzwiller approximation. In
Figs. 9 and 10 we provide the exemplary phase diagrams

on the plane temperature T � applied magnetic �eld
H for the three-dimensional gas [28] and for the square-
lattice cases [33], respectively. Note that the phase di-
agrams drawn in the Figures are for the simple Fulde�
Ferrell state, i.e. for the form of the gap. Additionally
the gap has the d-wave symmetry.

Fig. 10. Phase boundaries for a two-dimensional d-
wave superconductor with both the spin-independent
masses (SIM) (a) and with the spin-dependent masses
(SDM) (b). The FFLO�BCS transition line is of dis-
continuous nature. The dashed line marks the stability
limit of the BCS state as determined by the value of the
second critical �eld Hc2 for the BCS state. The values
of parameters are n = 0.97 and V0 = 12.5 K. For these
values of the parameters, the superconducting transi-
tion temperature is T = 2.5 K and the uppermost crit-
ical �eld for the FFLO phase is above 6 T. Note that
the FFLO state is robust in the situation with SDM and
this result is one of the principal features of the present
discussion [33].

The most important feature coming out of these Fig-
ures are: (i) the BCS state (i.e. that with Q = 0) is
quite robust in the lower �elds and higher temperatures,
(ii) the inclusion of the e�ective-mass spin dependence
leads to a remarkable extension of regime of the FFLO
stability in both depicted situations, (iii) in the FFLO
phase the upper critical �eld of the transition to the nor-
mal phase is much higher than Hc2 for the BCS super-
conducting state (cf. Fig. 10, the dashed lines mark the
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second critical �eld Hc2 in the the Pauli limit), and (iv)
the �rst-order BCS→FFLO transition can be accompa-
nied by a weak metamagnetic transition [33]. One should
also note that the detailed analysis of the FFLO state is
carried out separately [33]. Also, the full SCA analysis
of the superconducting states within the full statistically-
consistent Fukushima approach for the present model is
still to be carried out. We do not expect though, that
such analysis will change the picture in a decisive man-
ner.

4.4. Superconducting state by the Kondo-type (hybrid)
pairing in the Anderson�Kondo model

Above, we considered only the narrow f -band limit for
the Anderson�Kondo model. Such model is valuable if
the the f -level occupancy nf can be regarded as con-
stant in the considered regime of parameters, i.e. the
hybridization gap is regarded as large. Here we mention,
that recently we have obtained an explicit solution of
the Anderson�Kondo Hamiltonian (10) in SCA. The de-
tailed phase diagram will be discussed elsewhere. Here,

Fig. 11. Bare unrenormalized hybrid-gap amplitude
pro�les as a function of both total number ne of elec-
trons per site or intraatomic-hybrid magnitude. The
values of parameter ϵf = −1, U = 3, W = 2z|t| = 1.
The renormalized gap magnitude is∆C ≃ q(∆↑↓∆↓↑)/2.
The gap amplitude vanishes in both Kondo-insulator
(ne → 2) and in the localized moment (|V | → 0) limits.

in Fig. 11 we show the components ∆↑↓ ≡ ⟨fi↑ci↓⟩ and
∆↑↓ ≡ ⟨fi↓ci↑⟩ = −∆↑↓, both as a function of magni-
tude V of the bare (intraatomic) hybridization and the
total number of electrons ne ≡ nf + nc (per atomic site
containing pair of orbitals f and c). The fact, that we
treated as separate averages ⟨f↑c↓⟩ and ⟨f↓c↑⟩ and have
obtained that they are of equal magnitude but of oppo-
site sign means, that we have in this case indeed a pure
spin-singlet hybrid pairing which vanishes either in the
limit of ne = 2 (where the Kondo-insulator state becomes
stable) or when V → 0, where localized-moment antifer-
romagnetic phase is stable. Also, the regime of AF-phase
stability is separated from that, in which SC is stable.
Work along this lines is in progress and will be reported
separately.

5. Outlook

Below, instead of making a summary, we pose some
important questions concerning the real space pairing
�rst and then conclude by suggesting its universal charac-
ter applicable also to nuclear and astrophysical quantum
matter.

5.1. From real-space pairing to
renormalized-paramagnon mediated pairing

In this paper we overviewed the concept of real space
pairing, induced by the kinetic exchange interaction com-
bined with the pair correlated motion. This pairing is
facilitated by the circumstance that the kinetic-exchange
interaction integral J (or that for the Kondo interaction,
JK) is comparable to the single-particle energy as ex-
pressed by the renormalized hoping magnitude ≈ |t|x
(|V |x for hybridized systems). In that situation, the
second exchange-coupled partner to a given electron (or
hole) follows in their combined motion throughout the
lattice. This situation has been animated graphically
elsewhere [23]. To reiterate, there is no obvious interven-
ing collective boson excitation mediating the pair bind-
ing. A contribution of the renormalized paramagnons to
the pairing represents an additional factor to be evalu-
ated separately starting from RMFT.
Namely, in the situation when the renormalized hop-

ping magnitude can be smaller than the pairing poten-
tial magnitude J (cf. Appendix C, when x ≤ xc1),
the Hartree�Fock-type (BCS) decoupling of the term,

B†
ijBij ≈ ⟨B†

ij⟩Bij + ⟨Bij⟩B†
ij − ⟨B†

ij⟩⟨Bij⟩, can be re-
garded only as a �rst-order approximation. The Renor-
malized Mean Field Theory had to be an invented as an
approximate treatment of the e�ective Hamiltonians, al-
beit not systematic in the �eld-theoretical sense, that we
�rst perform the saddle-point approximation and include
the quantum Gaussian �uctuations next. Those renor-
malized Gaussian �uctuations should lead to a resid-
ual paramagnon pairing. The last approach has been
outlined brie�y in the Appendix E. There, we reiterate
more precisely the just mentioned di�culties connected
with the division into the real-space and renormalized-
paramagnon pairing parts. It remains to be seen to what
extent the paramagnon part is important. It should be
important in the underdoped regime x ≈ xc1 as the
|t|x ≈ J . The division into the mean-�eld and the para-
magnon parts may be easier to carry out in the limit of
moderately or weak correlated systems. This is because
then the division into the Hartree�Fock and the �uctua-
tion parts is natural.

5.2. E�ective t�J and t�J�V models should include
direct intersite (interorbital) Coulomb interactions?

There is one additional feature of the models as repre-
sented by the starting e�ective Hamiltonians (2) and (5)
not discussed in detail. Namely, the respective intersite
or interorbital direct Coulomb interaction should be in-
cluded in the corresponding Hamiltonians. This is be-
cause, from one side J < K⟨ij⟩ and JK

im < Ufc, and
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from the other, such terms are already included in the
corresponding full expression of the Dirac spin-exchange
operators. Their role many not be so obvious if we de-
couple them and include anomalous contraction of the
type ⟨aiσaiσ̂⟩. One may think, that when decoupling in
the Hartree�Fock manner the term ≈ νiνj (or ν1nm in
the hybrid pairing case), the contribution to the singlet-
and the triplet-pairing channels is the same for this spin-
independent term and therefore, the whole term can be
disregarded when considering the paired state. Addi-
tional reason for disregarding the term ≈ Kij is that the
paring is due to the combined e�ect of exchange and cor-
related hopping. Nonetheless, the inclusion of such terms
would present itself as an additional test of the whole pic-
ture, though most probably the expected results would
be of secondary importance in the most important situa-
tions (cf. also the related discussion of the situation with
Kij < 0 in the main text).

5.3. From real-space pairing to the Hund's rule
exchange pairing

Once we have suggested, that the exchange interac-
tion is not only a source of spin magnetism but also a
fundamental mechanism of the real-space superconduct-
ing pairing, we may ask if other exchange interactions
may become a source of pairing or super�uidity. Here,
we have in view our ideas [34] about the role of the fer-
romagnetic, intraatomic, interorbital (Hund's rule) ex-
change in orbitally degenerate systems. Customarily, the
Hund's rule exchange is associated with itinerant fer-
romagnetism in moderately correlated systems [35] or
with an orbital ordering mixed with magnetic ordering
in strongly correlated systems [2]. We have suggested
that for the itinerant correlated and orbitally degener-
ate narrow band systems the Hund's rule exchange pro-
vides a stable spin-triplet superconducting state both in
the Hartree�Fock [35] and in the strong-correlation lim-
its [36]. In Fig. 12 we illustrate this statement in the
former limit, respectively by plotting the corresponding
phase diagram. The phase diagram displayed here sup-
plements the well known phase diagrams involving only
magnetic phases [36] with the superconducting paired
states. This topics require a detailed separate analysis,
which is in progress.

5.4. Concluding remarks

The real space pairing concept is di�erent from other
concepts, which are based on the idea of virtual boson
excitation (phonon, paramagnon etc.) mediating the at-
traction between fermion. Here the exchange interaction
combined with a correlated motion of the pair (pair hop-
ping) is responsible for the pairing. The latter idea has
an intuitive interpretation [23]. However, the real space
pairing concepts should be tested further. A selected
comparison of RMFT results with experiment have been
also discussed in this text. Those results are insu�cient,
as for instance the Fermi surface evolution and the pseu-
dogap appearance have not been (and cannot be) ad-

Fig. 12. Exemplary phase diagram [35] on the plane
band �lling n � Hund's rule exchange J = JH . The
phases are as follows: NS � normal state; A � super-
conducting spin-triplet state with the gaps ∆↑↑ = ∆↓↓;
A1 � superconducting spin-triplet state with the gap
∆↑↑ ̸= 0 only; AF � antiferromagnetic state; FM �
ferromagnetic state; SFM � saturated ferromagnetic
state; AF+SC � mixed antiferromagnetic + supercon-
ducting state with the superconducting gaps di�erent
for majority- and minority-spin electrons on given site.
The square lattice was assumed with W = 1, U = 7J ,
and no hybridization in the doubly degenerate band was
included.

dressed property within RMFT, i.e. without the phase
�uctuations of the superconducting gap.
One additional general remark is in place at the end.

Namely, the exchange interaction is a universal interac-
tion in the sense, that it takes place between any two
interacting fermions. Therefore, it would be interesting
to address the question of real space pairing in a corre-
lated quantum nuclear or astrophysical matter (nucleons
in nuclei, neutron stars, quark�gluon plasma, etc.). This
topic could become a further example of incorporating
the laboratory condensed matter physics into fundamen-
tal quantum-matter physics.
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Appendix A: The concept of t�J model and
real-space pairing � in perspective

In 2011 we celebrated 25th anniversary of the discov-
ery of high-TC superconductivity. In 2012 there is the
35th anniversary of our publication of t�J model [39], as
well as 25th anniversary of discovery its meaning in the
context of high-temperature superconductivity. Below I
provide a somewhat biased personal account of the last
two topics.

1976�1986
The generalization of the ideas of Anderson [3, 38] con-

cerning the origin of antiferromagnetic (kinetic) exchange
interaction for the Mott insulators to the strongly cor-
related metals was was done by the present author in
1976 and subsequently published with his colleagues [39].
The pioneering period was reviewed in my habilitation-
schrift [40]. The idea of de�ning the division of the hop-
pings into the four terms corresponding to the intra- and
inter- Hubbard subband hopping was particulary di�cult
to envisage. So the resulting canonical transformation, as
the "unperturbed" part of the Hamiltonian, was of non-
diagonal form in the Fock space. The last feature meant
that we had to perform the canonical perturbation ex-
pansion in the operator form. A more formal overview
of the pioneering era is given elsewhere [41]. Many au-
thors have rederived subsequently of the t�J model, but I
claim that our derivation was the �rst one, albeit limited
to the discussion of magnetic phases and the Mott tran-
sition as the band �lling approaches unity. Some authors
claim that Harris and Lange [42] provided the basis of

projected fermion operators {a†iσ(1 − niσ̂), aiσ(1 − niσ̂)}
and the kinetic exchange for the n ̸= 1 case, but a cur-
sory look to the paper shows that it does not contain
any explicit mention of the kinetic exchange and does
not introduce t2/U e�ects explicitly.
One should mention that practically at the same

time we have also introduced [43] an analogical e�ective
Hamiltonian for the Wol� model of the magnetic impu-
rity, which is to a certain degree analogous the Anderson
model of magnetic impurity. There, we introduced the
cases of "shallow" and "deep" impurity cases, which lead
me to the concept of the modi�ed Schrie�er�Wol� trans-
formation in the "shallow-impurity" case. This distinc-
tion is elaborated in the main text, when we talk about
the hybrid (Kondo) pairing for the Anderson lattice, ap-
pearing concomitantly with the itineracy of f electrons.
Practically, nobody was interested in those papers

then, as it seemed that the fashionable mixed-valence
and heavy-fermion physics had not much to do with the
Hubbard model or the Wol� model. There, the peri-
odic Anderson model or the Kondo-lattice models were
regarded as the distinct and relevant models.

1987�now
The revolution in theory of correlated electron sys-

tems came with the introduction of real-space pairing

amplitudes ⟨a†iσa
†
iσ̄⟩ within the t�J model. The author

learnt about the idea from the preprint of Ruckenstein,
Hirschfeld, and Appel [44]. The often quoted paper [45]

was completely illegible at the time (not only to the au-
thor) and it is extremely di�cult now to argue, at least
for me, who introduced the real space pairing �rst. We
can also say, that we have invented [6] a correct form of
the t�J Hamiltonian with the precise real-space projected

operators {B†
ij , Bij}, as well as have extended the repre-

sentation to the case with projected hybrid pairing op-

erators {b†im, bim}, which appear in the Anderson-lattice
model in "large-but-�nite U limit" [7]. The last model we
have termed as the Anderson�Kondo model. But, in anal-
ogy to t�J model, this model should be rather termed the
t�J�V model, where V stands for hybridization which ap-
pears concomitantly with the exchange couplings (Kondo
or superexchange) and is instrumental in driving the itin-
eracy of f electrons in heavy-fermion systems.
The second aspect of the real space pairing driven

by the kinetic exchange interaction is the absence of
the virtual boson driving the real space at least in the
mean �eld approximation. This question leads us to a
highly nontrivial problem of formulating renormalized
mean �eld theory (RMFT). This nontriviality of the
mean-�eld-approximation formulation in this situation
stems from the fact that the projected hopping part is,
strictly speaking, of many-body nature, since it contains

a†iσ(1−niσ̄)ajσ(1−njσ̄) factor. However, absolutely cru-
cial in the analysis are also the statistically consistency
conditions phrased explicitly in our recent works [5, 13,
14], as well as in some other papers [46]. The rationale
behind these consistency conditions, expressed through
Lagrange multipliers and added to the e�ective Hamil-
tonian, is to ensure that the self-consistent equations for
the averages appearing in the RMFT provide the same
results as those obtained from an appropriate variational
procedure for the free-energy functional representation,
the Landau functional in this situation.
The third aspect of the current research is to go beyond

the mean-�eld approximation, i.e. include the Gaussian
�uctuations. So far, this approach has been formulated
within the slave-boson approach (SBA) [3], which how-
ever contains spurious phase transitions corresponding to
the condensation of auxiliary boson �elds. RMFT with
the constraints is in some aspects equivalent to SBA in
the saddle-point approximation. A systematic approach
to incorporate the quantum �uctuations starting from
RMFT, is still missing (cf. Appendix E).
An approach based on the Quantum Monte-Carlo

method provides a very important insights into the re-
sults, albeit limited to very small systems. A combination
of RMFT with spatially inhomogenous order parameters
and quantum Monte-Carlo methods seem to be also very
promising.

Appendix B: Analytic estimate of the BCS type
gap magnitude, universal 2∆(0)/kBTC ratio, and

reduction to classic mean �eld case

Here we sketch the derivation of Eq. (32). Its im-
portance derives from the surprisingly good approach in
Fig. 6 of the numerically obtained gap magnitude ∆C
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with that from (32). Our results put on a solid ground
the estimates proposed originally (but not derived) by
Rickayzen [26].

We start from the self-consistent equation for the gap
magnitude within BCS theory, namely

1 = 1
2

∫ ~ωD

−~ωD

dϵ ρ(ϵ)V (ϵ)
1√

ϵ2 +∆2

× tanh

(√
ϵ2 +∆2

2kBT

)
, (B1)

where V (ϵ) is the absolute value of the pairing potential,
ρ(ϵ) is the density of states in the band, ϵ is the parti-
cle energy counted from the Fermi energy ϵF ≡ 0, and
~ωD is the energy cut-o� for the pairing potential (in the
real-space pairing case, we take ~ωD ≃ J , the magnitude
of kinetic-exchange interaction). We believe, it is rea-
sonable to make the so-called BCS approximation at this
stage, justi�ed in the present situation in the following
manner. Namely, we utilize Rolles's theorem about the
average value of the de�ned integral:∫ b

a

dx f(x) = f(x̄)(b− a), (B2)

where x̄ ∈ [a, b]. In other words, the area under the
curve f(x) can be represented by that of a rectangular.
In applying this theorem to (B1) we �nd that it can be
rewritten in the form:

1 = ~ωDρ(ϵ̄)
1√

ϵ̄2 +∆2
tanh

(√
ϵ̄2 +∆2

2kBT

)
. (B3)

Now, it is reasonable to assume that ∆ ≪ ~ωD ≪ ϵF , so
we can represent ϵk − µ in the same manner, as in the
Fermi-liquid theory, i.e. assume that near the Fermi level

ϵk − µ ≡ ~vF k, (B4)

so that in volume Ω the density of states is

ρ(ϵ) =
Ω

(~vF )3 π2
ϵ3, with ϵ = ~vF k, (B5)

which is an antisymmetric function of ϵ. Hence, the in-
tegral of (B2) is an increasing function as we cross the
Fermi level energy µ. This minor argument is used to
make a bold statement, that in such a situation an al-
most exact approximation can be made, i.e. one can put
ϵ̄ = 0 in (B3). This means that the integral equation can
be replaced by the following algebraic equation

1 = ~ωDV (0)ρ(0)
1

∆(T )
tanh

(
∆(T )

2kBT

)
, (B6)

which represents a classical mean-�eld self-consistent
equation for the order parameter ∆(T ) (e.g. for the
spin (1/2) Ising model). Parenthetically, this means that
the BCS-superconductor phase transition is of classical
nature, with a mean-�eld (van-der-Waals type) classical
critical point TC .

One can draw additional conclusions from the re-
sult (B6). First, assuming that the order parameter ∆ =
∆(T ) is small when T → TC − 0, one can rewrite (B6) in
the form of Landau equation for the order parameter:

∆ ≃ ~ωDV (0)ρ(0)

(
1− 1

3

(
∆

2kBT

)2)
∆

2kBT
, (B7)

or equivalent (for T ≃ TC):

∆

(
1− ~ωDV ρ

2kBT

)
+ 1

24

~ωDV ρ

(kBTC)
3∆

2 = 0. (B8)

Thus, to a good approximation

kBTC = 1
2
ωDV (0)ρ(0), (B9)

and then it can be rewritten in the form
∆(T )

2kBTC
= tanh

(
∆(T )

2kBT

)
. (B10)

This relation, in turn, leads to the following universal re-
lation for the gap-to-TC ratio:

2∆(0)

kBTC
= 4. (B11)

This value di�ers from the usual estimate of this ratio
� the value 3.53 (or 3.311) � obtained directly from
Eq. (B1) estimate. We think the discrepancy is not large
, in view of even larger di�erence in experimental data for
the BCS superconductors. In the context of our present
discussion of correlated systems, this ratio of maximal
amplitude ∆c(0) to the real experimental value of TC

should be either equal to the (B11) or even larger. The
latter situation takes place if the pairing-potential renor-
malization is augmented by the additional renormaliza-
tion of the density of states, so that 2∆(0)/TC = 4(qt)−1.
On the basic of the above treatment one can also

rewrite Eq. (B6) in the form

∆(T )

∆(0)
= tanh

(
∆(T )

∆(0)

TC

T

)
, (B12)

which coincides with that proposed originally by Rick-
ayzen [26]. In brief, this discussion, ignited by the coin-
cidence of the results shown in Fig. 6, illuminates a "BCS
aspect" of the present renormalized mean �eld theory.

Appendix C: Elementary estimate of the lower
critical concentration for onset of

antiferromagnetism

Here we estimate the critical concentration for the an-
tiferromagnetism disappearance as a function of doping.
For that purpose we start from the canonical version of
the t�J model (2) without the last two terms included.
One may say that in the Mott insulating state antifer-
romagnetic interaction dominates over the hole hopping
and this means that the (lower) critical concentration
is achieved when the two contributions are of the same
magnitude, i.e.

−z |t| x(1− x) + J(1− x)2 = 0. (C1)

This happens roughly at the hole concentration

x = xc1 ≃ J

z|t|+ J
≃ 1

z

J

|t|
, (C2)

which yields xc1 ≃ 0.07, a quite reasonable value in view
of the simplicity of the estimation.
In order to try to improve the estimate we formulate

an elementary Gutzwiller type of approach in which the
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renormalized hopping and the exchange parts are of the
same amplitude. This means that we can postulate the
ground energy per site of the form

EG

N
= −z |t| Φ(λ)

∑
j(i)

⟨a†iσajσ⟩0 − Jzλn2, (C3)

where the variational parameter λ ≡ ⟨(1/4)ninj−Si·Sj⟩,
is equal to unity in the Néel state of the Mott insulator
and reduces to the value λ = (1/4)⟨ni⟩⟨nj⟩ = 1/4 in the
uncorrelated state. The renormalization factor can be
expanded in powers of λ

Φ(λ) = g0 + g1λ+ g2λ
2, (C4)

in which higher order terms have been disregarded as
we are close to the magnetism disappearance (or onset).
Also, the hopping probability in the uncorrelated state

is ⟨a†iσajσ⟩0 = nσ(1 − nσ) = (n/2)(1 − n/2). Next, the
constant g0, g1, and g2 can be determined from the par-
ticular solvable limits, namely:

1o Φ(λ = 1) = 0, (C5)

we do not encounter any hopping, i.e. g0 + g1 + g2 = 0

2o Φ
(
λ = 1

4

)
= 1, (C6)

i.e. g0 +
1
4
g1 +

1
16
g2 = 1.

Hence, the optimal value of λ = 1/4 (from ∂E0/∂λ = 0)
becomes

λ =
1

4g2

Jn

|t|(1− n)
+ g1. (C7)

Now, the remaining condition is that λ = 1/4 when
J = 0. In result, we obtain g0 = −1/9, g1 = 8/9, and
g2 = −16/9. Hence,

xc1 = 1− nc1 ≃ 1

1 + 8|t|
3J

≃ 0.1, (C8)

for |t|/J = 3. Finally, the optional ground state energy
per pair of states and for n > nc1 is

EG

zN
= −|t|n(1− n)− J

4
n2 − 9

64

J2n3

|t|(1− n)
. (C9)

Note that if the ratio |t|/J = 6, then xc1 ≈ 0.07. This
is still too high value by a factor of 2 when compared to
the experimental value: xc1 ≃ 0.03 for La2−xSrxCuO4.
Nevertheless, the expression (C8) has a straightforward
interpretation. Namely, the �rst term is the renormal-
ized band energy in the Gutzwiller approximation in the
normal state and in the U = ∞(J = 0) limit. The sec-
ond term is the energy of the Néel state in the mean �eld
approximation for the Heisenberg part. The last contri-
bution is the higher-order contribution coming from the
correlations (note that our order parameter λ in the Lan-
dau expansion (C3) is of two-particle nature, but still we
recover a single-particle (mean-�eld) description).

This lower concentration nc1 (or xc1) is missing in the
present approach (cf. Subsection 4.3), since no localiza-
tion e�ects within RMFT-SCA were taken into consid-
eration. This means that we may need to supplement
our whole approach with some sort of cluster expansion,
i.e. improve on the Gutzwiller (or Fukushima) ansatz.

We should see a progress along this line in near feature
e.g. by evaluating the averages with the help of a full
Gutzwiller wave function [22].

Appendix D: From Kondo coupling to real space
pairing in an almost localized Fermi-liquid of

heavy quasiparticles

Hamiltonian (10) can be transformed to the mean-�eld
form and subsequently to the momentum representation,
in which it takes the form [33]

H =
∑
kσ

(
ϵkσc

†
kσckσ + ϵ̃fσf

†
kσfkσ + Ṽkσf

†
kσckσ

+Ṽ ∗
kσc

†
kσfkσ

)
− 2

ϵf + U

1

N∑
kk′Q

VkV
∗
k′ (qσqσ̄)

1/2
A†

k,QAk′,Q, (D1)

with

A†
kQ = 1√

2

(
f†
k+Q/2↑c

†
−k+Q/2↓

−f†
k+Q/2↓c

†
−k+Q/2↑

)
. (D2)

The wave vector Q is nonzero in FFLO phase. The
single-particle part can be easily diagonalized by mov-
ing to the hybridized basis, whereas the pairing part is
represented by a separable pairing potential. We shall
proceed with the transformation to the hybridized basis
�rst, which yields the following transformed pairing part
for the lower hybridized band

H =
∑
kσ

Ekσα
†
kσαkσ − 4

ϵf + U
×

∑
kk′Q

|VkVk′ |2√qσqσ̄√
(ϵkσ − ϵ̃fσ)2 + |Ṽkσ|2

√
(ϵk′σ̄ − ϵ̃fσ̄)2 + |Ṽk′σ̄|2

×α†
k+Q/2↑α

†
−k+Q/2↓α−k′+Q/2↓αk′+Q/2↑, (D3)

with the dispersion relation in the lower hybridized band
in the form

Ekσ ≡ ϵkσ + ϵ̃fσ
2

−
((ϵkσ + ϵ̃fσ

2

)2
+ |Ṽkσ|2

)1/2

.(D4)

Note that in (D3) and (D4) we have written the formu-
las for the spin-polarized situation. For real Vk, the hy-
bridized quasiparticle operator reads αkσ = cos θkσfkσ+
sin θkσckσ, with the condition for the mixing angle θk

tan 2θkσ =
2Ṽkσ

ϵkσ − ϵ̃fσ
. (D5)

Taking the states on the Fermi surface we have
tan 2θkσ ≈ 2θkσ, and hence θkσ = Ṽkσ/ϵ̃fσ. In ef-
fect, αkσ ≃ fkσ. The last estimate provides us with
the starting Hamiltonian (39) in the single-band limit.
The complicated k-dependence of the pairing potential
means that in general, the nature of the superconduct-
ing gap may take a form more complicated than pure
extended s-wave or d-wave forms. Note also that even
though the pairing potential contains explicitly the spin
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quantum numbers, it is in fact spin independent, as as-
sumed in the main text.

Appendix E: Incorporation of quantum
�uctuations within the SGA�RMFT approach

and the e�ective fermion�boson model

The e�ective Hamiltonian (18) in SGA approximation
can be generalized to include the quantum �uctuations.
Namely, we can generalize it the spin rotationally invari-
ant form, which can be now written in the following real-
space form:

H̃ ≈ HGA −
∑
i

λ
(m)
i · (Si − ⟨Si⟩)

−
∑
iσ

λ
(n)
i (niσ − ⟨niσ⟩) , (E1)

where

Si ≡ 1
2

∑
σσ′

(τ )σσ′a†iσaiσ′ , (E2)

and τ ≡ (τx, τ, τz) are the Pauli matrices. The con-
straints can be divided into the mean-�eld and the �uc-
tuation parts according to

H̃ ≈ HGA − λ(m) ·
∑
i

(Si − ⟨Si⟩)

−λ(n)
∑
iσ

(niσ − ⟨niσ⟩)

−
∑
i

(
λi − λ(m)

)
· (Si − ⟨Si⟩)

−
∑
i

(
λ
(n)
i − λ(n)

)
(niσ − ⟨niσ⟩) , (E3)

where we have assumed that ⟨Si⟩ is oriented along z-

axis, if λ(m) ≡ (0, 0, λ(m)) is taken. The �rst three
terms compose the SGA Hamiltonian (18) (the factor
1/2 in the second term is irrelevant, since we can rede-
�ne λ(m) ≡ 1/2λ(m)), whereas the remaining two terms
represent the �uctuation around the mean-�eld equilib-
rium. We can write down the �uctuation part in the form

δH̃ ≡ −
∑
i

(
δλ

(m)
i · δSi + δλ

(n)
i δni

)
. (E4)

It is composed of the local spin and the charge �uctu-

ations coupled to the �uctuating Bose �elds δλ
(m)
i and

δλ
(n)
i . Note that we have neglected the �uctuations in

double-occupancy d2i = ⟨ni↑ni↓⟩, which can also be in-
cluded, at least in principle. The form (E4) represents
the starting point of analysis, which will not be detailed
here.

From t�J to the fermion�boson model with correlations:
a formal transformation

The above intuitive picture can be rephrased in a
more formal language. We outline this method for the
t�J model containing explicitly the real space pairing.
Namely, we start from the expression for the partition
function of t�J model (for the simplest situation, i.e.
with no three-site terms and with Kij ≡ 0) in the

coherent-state representation, which reads

Z =

∫
D
[
biσ, b

†
iσ

]
× exp

(
−
∫ β

0

dτ
∑
ijσ

[
b†iσ(τ) [(∂/∂τ − µ) δij + tij ]

bjσ(τ) +HI(τ)
])

, (E5)

where we integrate over the Grassmann �elds (b†iσ, bjσ),
β = (kBT )

−1 is the inverse temperature, and

HI(τ) = −
∑
⟨ij⟩

′
JijB

†
ij(τ)Bij(τ), (E6)

is the interaction part. Now, the novel basic idea is that
the summation over bonds ⟨ij⟩ can be regarded formally

as a simple summation; B†
ijBij then has the form appro-

priate for the Hubbard�Stratonovich transformation, i.e.
we can linearize the quartic term in the following man-
ner:

HI ≡ −g
∑
⟨ij⟩

B†
ijBij

→
∑
⟨ij⟩

(
−B†

ij∆ij −∆∗
ijBij +

∆ij∆
∗
ij

g

)
, (E7)

with g ≡ J⟨ij⟩ = J . In e�ect, the partition function takes
the form

Z =

∫
D
[
biσ, b

†
iσ,∆ij ,∆

∗
ij

]
× exp

(
−
∫ β

0

dτ
∑′

ijσb
†
iσ(τ)

(
(∂/∂τ − µ) δij + tij

)
×bjσ(τ)−

∑
⟨ij⟩

(
∆ij(τ)B

†
ij(τ) +∆∗

ij(τ)Bij(τ)

−|∆ij |2

Jij

))
. (E8)

In e�ect, we have the following Hamiltonian when we in-
clude both �elds:

H̃ ≡ H̃FB(τ) =
∑
ijσ

′
(tij − µδij) b

†
iσ(τ)bijσ(τ)

−
∑
⟨ij⟩

(
∆ij(τ)B

†
ij(τ) +∆∗

ijBij(τ)
)

+
∑
⟨ij⟩

J−1
ij ∆∗

ij(τ)∆ij(τ). (E9)

We see that ∆ij(τ) in the RMFT is played by ∆ij =
Jij⟨Bij⟩. Here, the representation is exact and the "time

τ" dependent pair-fermion �eld B†
ij(τ) is coupled directly

to the bosonic �eld ∆ij(τ) [47], the latter is a Gaussian
�uctuating complex �eld. Alternatively, one may add
the Bose term −

∑
⟨ij⟩ J

−1
ij ∆∗

ij∆ij to the e�ective Hamil-

tonian as in (E9). In the saddle-point approximation the
τ dependence of the �elds is disregarded and the pairing
amplitudes are minimized for the free-energy functional.
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Note, that ∆ij represent the spin-singlet-pairing ampli-

tudes, as B†
ij and Bij have the form (4). However, even

in the mean-�eld approximation, de�ned in the above
manner, the problem is still highly nontrivial, since the
�rst term in (E9) contains the projected fermionic op-

erators b†iσ and bjσ with non-fermionic anticommutation
relations (3). This was actually the reason for the discus-
sion on nontriviality of the renormalized mean-�eld the-
ory (RMFT). This circumstance leads also to the conclu-
sion, that if we start our analysis from RMFT for (E9),
then to be able to include the �uctuations in ∆ij in a
systematic manner, one has to include the �uctuations
in projected fermionic �elds around RMFT solution as
well, which may represent a formidable task. Most prob-
ably, the viable method to diagonalize exactly (E9) in
the saddle-point approximation is to resort to the Quan-
tum Monte-Carlo or related cluster-expansion methods.
Nonetheless, the expression (E8) provides a hint concern-
ing the direction, in which a systematic approach towards
rigorous solution of the t�J model should be developed.
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