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Lost of Bosonic Coherence Due to the Fermionic Presence

Under the Synthetic Magnetic Field
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We have studied e�ects of inter-species interaction of the bosons in a Bose�Fermi mixture over a large regime
of particle numbers under the synthetic magnetic �eld. Analytically derived formulas for the density of states
for several values of the magnetic �elds f = 1/2, 1/3, 1/4, 1/6, 1/8 and 3/8 allows us to calculate, with a very
good accuracy, the e�ective interaction between bosons. The presence of the Hofstadter butter�y spectrum and
fermionic species induces alternating sign potential between neutral bosonic atoms. Consequently bosons can
attract or repulse each other whether sign of it strongly depends on the strength of the magnetic �eld applied to
the sample.
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Trapping and cooling Bose�Fermi mixtures of dilute
quantum gases has opened a wide area of research in
atomic physics. The interactions between bosonic and
fermionic species interconnect two systems of fundamen-
tally di�erent quantum statistics. The charge neutrality
of atoms prevents direct application of the Lorentz force
with a magnetic �eld. Recently, the observation of a
great variety of fundamental phenomena i.e. quantum-
Hall e�ects become possible owing to the advancements
of various experimental techniques [1�3]. An equivalent
e�ect can be provided by the Coriolis force in a rotat-
ing atomic gas. In a frame of reference rotating about
the z-axis with angular velocity Ω the kinetic term in
Hamiltonian is equivalent to that of a particle of charge
Q experiencing a magnetic �eld B with QB = 2mΩ ,
where m is the mass of the particle [4]. The above
setting comes with limitations because a large magnetic
�elds f ≡ ma2Ω/π~ (angular momentum) are required
to make possible the study of poorly explored bosonic
states in case when f ≡ p/q, (p and q is the ratio of atom
number to the number of �ux quanta respectively) is a
rational number.

Current experiments [5�9] on trapped mixtures of the
atomic Bose�Fermi (BF) and Bose�Bose gases show that
the presence of a relevant fraction of one modi�es the
quantum phase transition occurring in the other induc-
ing a signi�cant loss of coherence. These observations
are supported by a theoretical description that includes
the multiband virtual transitions [10], di�erent masses of
strongly interacting particles [11] and numerical calcula-
tions [12]. The density�density (DD) interaction between
di�erent species can be repulsive or attractive and is pro-
duced by changes of one species density that induce a
modulation of another. Therefore the dynamics underly-
ing the phase transitions in the BF mixtures is produced
by the feedback of the density perturbation and a shift
of the inter-bosonic potential occurs, that changes the

original interaction between them [13] providing various
novel phases [14].

In the present paper, motivated by recent experiments
done by Lin's group et al. [15] which engineered a Hamil-
tonian with a spatially dependent vector potentialA thus
successfully producing B = ∇ × A, we calculated the
form of the e�ective inter-bosonic potential when a syn-
thetic magnetic �eld (SMF) is applied to neutral gaseous
Bose�Fermi mixtures. We predict that the fermion-
mediated e�ective interaction between bosons has a com-
plicated pattern of the frequency dependent magnitude.
Moreover, the SMF renders the inter-bosonic potential
oscillatory with sign change, thus switching it between re-
pulsive and attractive. As a consequence the resonances
appear and BF mixture that enters the quantum-Hall
regime displays surprisingly complex dynamics unreach-
able in conventional solid state physics. We expect that
our theoretical results open up the experimental stud-
ies [16] of the re-normalized interaction energies in stable
many-body phases with strong correlations and their dy-
namical properties.

Restricting our analysis to the lowest energy band of
a square optical lattice in synthetic magnetic �eld, the
Bose�Fermi quantum gaseous mixture can be modeled
via the following Hamiltonian [17]:

Ĥ =
Ub

2
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⟨i,j⟩

tbij e
2π i
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∫ ri
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n̂fi

+Ubf

∑
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n̂bin̂fi, (1)

where b̂†i (ĉ
†
i ) and b̂j(ĉj) stand for the bosonic (fermionic)

creation and annihilation operators; n̂bi = b̂†i b̂i (n̂fi =

ĉ†i ĉi) measures the corresponding boson (fermion) num-
ber on the site i, Ub > 0 is the on-site repulsion and
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µb (µf ) stands for the chemical potential for bosons
(fermions). The DD interaction between the bosonic
and non-interacting, spin-polarized (collisions in the s-
wave channel are forbidden by their statistics), fermionic
atoms is denoted by Ubf and depends, on boson to
fermion mass ratiomb/mf . Here, ⟨i, j⟩ identi�es summa-
tion over the nearest-neighbor sites. Furthermore, tb(tf )
sets the kinetic energy scale for bosons (fermions). We
assume that an optical lattice created by the counter-
propagating laser beams is deep enough and we can re-
strict ourselves to the lowest Bloch bands. The corre-
sponding experimental parameters can be estimated by
following relations:
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π
Ex
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Ex
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exp

(
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√
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, (3)

(subscript x = {b, f} means b bosons and f fermions
respectively) where boson�boson ab, fermion�fermion af
and boson�fermion abf

Ubf ≃
√
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kabfE

b
r
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mf(
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scattering lengths can be continuously tune in the exper-
iments [5�8] inducing attractive or repulsive interaction
between species. The k = 2π/λ is the wavelength of the
laser and Ex

r = ~2k2/2mx is the recoil energy and mx is
the atomic mass. The phase shift on each site is deter-
mined by the vector potentialA (r) and can be controlled
experimentally [15] and can be interpreted as Aharonov�
Bohm phases. The magnetic �eld is introduced in the
theory by the density of states (DOS). There are signif-
icant di�culties in obtaining and analyzing and analyze
the solutions of the above analytically for every value
of f . Only a few closed formulas for DOS are acces-
sible [18] and consequently not every applied magnetic
�eld can be described theoretically. Of special interest
are the values of the angular momentum which corre-
spond to rational numbers of f = 1/2, 1/3, 1/4, ... Since
all properties of the Hamiltonian (1) are invariant un-
der f → −f and also under f → f + 1, it is su�cient
to consider f in the range 0 < f < 1/2 that can be
reached experimentally by applying Raman lasers to the
gas in order to realize a Berry's phase for a moving parti-
cle. This allows us the detailed analysis of the dynamical
response function which have been found to play a cru-
cial role in complex systems. The partition function of
bosonic and fermionic mixtures is written in the form
Z =

∫ [
Db̄DbDc̄Dc

]
e−S[b,c] with action given by

S = Sb + Sc +

∫ β

0

dτH (τ), (5)

where Sb =
∑

i

∫ β

0
dτ b̄i

∂
∂τ bi and Sc =

∑
i

∫ β

0
dτ c̄i

∂
∂τ ci.

Using the bosonic (fermionic) path integral over the com-
plex �elds depending on the "imaginary time" 0 ≤ τ ≤

β ≡ 1/kBT with T being the temperature we can easily
integrate over the fermionic �elds [11] because spins are
frozen due to in�uence of the magnetic trap and there is
no direct interaction between fermions. After that, we
obtain the partition function in the form

Z =

∫ [
Db̄DbDc̄Dc

]
e−Sb[b,nb] e−Tr lnGc . (6)

The trace of the two-point correlation function for
non-interacting fermions Gc, after exploiting Fourier�
Matsubara transform reads:

Tr lnGc = −
U2
bf

2

∑
k,ℓ

Λk (ωℓ)χk (iνℓ)Λ−k (−ωℓ) , (7)

where ωℓ = 2πℓ/β (νℓ = π (2ℓ+ 1) /β) with ℓ =
0,±1,±2, ... are the Bose(Fermi)�Matsubara frequencies
respecting periodic (anti-periodic) boundary conditions
of the bosonic (fermionic) �eld operator with Λk (ωℓ) =
b̄k (ωℓ) bk (ωℓ) and

χk (iνℓ) =
∑
k′

nF

(
t
p/q
fk′

)
− nF

(
t
p/q
fk′+k

)
t
p/q
fk′ − t

p/q
fk′+k − iνℓ

, (8)

is the Lindhard function � more commonly called the

RPA with nF(x) being the Fermi distribution; t
p/q
k′ is the

dispersion relation calculated from Harper equation [18].
It correctly predicts a number of properties of the collec-
tive phenomena in electron gas such as plasmons [19]. To
stay in the local regime we perform k and k′ integration
over the �rst Brillouin zone and, in the T → 0 limit, us-
ing an analytic continuation, we obtain imaginary part
χ′′ (ω) of the local dynamic Lindhard function (LDLF).
Therefore, the corresponding real part χ′ (ω) can be de-
duced from the Kramers�Krönig relation. Now, doing
the inverse Fourier transform Eq. (7) and using gradient
expansion, we obtain quadratic form of the trace with
extracted frequency dependence

Tr lnGc → −
U2
bfχ

′ (ω)

2

∑
i

∫ β

0

dτ
[
b̄i (τ) bi (τ)

]2
. (9)

The consequence of the di�erence in masses of bosons
and fermions is the fact that the speed of the Bogoli-
ubov sound vb for bosons di�ers from the �rst sound
vf of the ideal Fermi gas. In typical experimental real-
izations the acoustic long-wavelength boson and fermion
velocities are comparable and both constituents equi-
librates similarly. The mentioned di�erent mass ra-
tio has far-reaching consequences, including the possi-
bility of generating the DD oscillations. When we add
Eq. (9) to the bosonic part of the action there is a strik-
ing resemblance to the one-component Bose�Hubbard
action with the original repulsive interaction replaced
now by Ub → Ueff = Ub + U2

bfχ
′ (ω) which is the in-

duced, frequency-dependent, e�ective inter-bosonic po-
tential. From the above we see the DD correlations be-
tween the constituents give rise to additional interaction
among bosons, which is robust to repulsive or attractive
nature of the inter-species interaction but not to the sign
of the LDLF. The interactions caused by the DD corre-
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Fig. 1. Real tfχ
′′ (ω) and imaginary tfχ

′ (ω) parts of
the local, frequency ω/8tf dependent, density�density
response function in the synthetic magnetic �eld for f =

1/3. Normalization here tf ≡ t
p/q=0
f .

lations may change its sign as a result of the collective
excitations see Fig. 1. Such complex behavior of the mix-
tures emerges in the limit not reachable in conventional
systems of condensed matter physics because the very
high values of magnetic �eld are required to acquire the
desired range f ≤ 1/2. Experimentally, by using a su-
perlattice potential with more than two non-equivalent
sites it is possible to create a lattice with a uniform and
non-zero magnetic �ux. This system would realize the
considered Bose Hubbard model Hamiltonian with the
presence of the fractal band structure of the Hofstadter
butter�y.
To obtain an equation of state we apply the quantum-

rotor approach, that successfully casts an essential part
of the physics of strongly interacting fermions [20�22] and
bosons [23] exclusively, to BF mixtures. We incorporate
fully our calculations to the phase �uctuations

bi (τ) = (a0 + a′i (τ)) e
iϕi(τ), (10)

governed by the gauge U(1) group and drop corrections
to the amplitude a′i (τ) of the order parameter

ΨB ≡
⟨
bi (τ) e

iϕi(τ)
⟩
= b0ψB. (11)

The non-vanishing value of the ΨB signals a bosonic
condensation [23]. A phase ϕi (τ) of the many-body
wave function might be arbitrary but correlations among
the local phases of its constituents can bring unusual
gauge structures. Now, the partition function Z =∫
[Dϕ] e−Sph[ϕ], with an e�ective action can be expressed

in phase-only terms

Sph [ϕ] =

∫ β

0

dτ

(∑
i

(
ϕ̇2i (τ)

2Ueff
+

µ̄b

iUeff
ϕ̇i (τ)

)

−
∑
⟨i,j⟩

Jp/q e i (ϕi(τ)−ϕj(τ))

 . (12)

The phase sti�ness coe�cient given by Jp/q =

t
p/q
b

(
8t

p/q
b + µ̄b − UbfNF

)
/Ub describes the hopping

matrix elements renormalized by the amplitude of the or-
der parameter and NF is the average number of fermions.

The total time derivative Berry phase imaginary term in
Eq. (12) is nonzero due to topological phase �eld con�g-
urations with ϕi (β) − ϕi (0) = 2πmi (mi = 0,±1,±2...)
that results in topological ingredients to the correlator
we will see below. Therefore, we concentrate on closed
paths in the "imaginary time" (0, β) labeled by the inte-
ger winding numbers mi. The path-integral∫

[Dϕ] ...

≡
∑
[mi]

∫ 2π

0

[Dϕ (0)]
∫ ϕi(τ)+2πmi

ϕi(0)

[Dϕ (τ)] ..., (13)

includes a summation overmi and in each topological sec-
tor the integration goes over the gauge potentials. There-
fore, we do not ignore the compactness of the gauge �elds.
To proceed, we replace the phase degrees of freedom by
the uni-modular scalar complex �eld ψ which satis�es the
quantum periodic boundary condition ψi (β) = ψi (0).
This can be conveniently done using the Fadeev�Popov
method with Dirac delta functional resolution of unity,
where we take ψ as a continuous but constrained (on the
average) variable to have the uni-modular value. We in-
troduce

1 =

∫
[DψDψ∗] δ

(∑
i

|ψ (τ)|2 −N

)

×δ
(
ψi − e iϕi(τ)

)
δ
(
ψ∗
i − e− iϕi(τ)

)
, (14)

and

δ

(∑
i

|ψi (τ)|2 −N

)
=

1

2π i

∫ +i∞

− i∞
dλ

× exp

(∫ β

0

dτλ

(∑
i

|ψi (τ)|2 −N

))
, (15)

where N is the number of lattice sites. Introducing the
Lagrange multiplier λ, which adds the quadratic terms
(in the ψ �elds) to the action we can solve for the con-
straint. The partition function can be rewritten to the
form

Z =
1

2π i

∫ +i∞

− i∞
e−λN dλ

∫
[DψDψ∗]

× exp

(
−
∑
i,j

∫ β

0

dτ dτ ′ψi

((
t̃bIij + λδij

)
δ (τ − τ ′)

γij (τ, τ
′)
)
ψ∗
j

)
, (16)

where

γij (τ, τ
′) =

⟨
exp
(
− i
(
ϕi (τ)− ϕj (τ

′)
))⟩

, (17)

is the two-point phase correlator associated with the or-
der parameter �eld, where ⟨· · · ⟩ denotes averaging with
respect to the action in Eq. (12). Because the values of
the phases ϕ which di�er by 2π are equivalent we de-
compose phase �eld in terms of a periodic �eld and term
linear in τ :
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ϕi (τ) = φi (τ) +
2π

β
miτ , (18)

with ϕi (β) = ϕi (0). As a result the phase correlator
factorizes as the product of a topological term depending
on the integers mi and non-topological one:

γij (τ, τ
′) = γTij (τ, τ

′) γNij (τ, τ
′) . (19)

Performing the Poisson re-summation formula in

γTij (τ, τ
′)

=

∑
[mi]

e− i 2π
β (τ−τ ′)mi e

− 2π
β

∑
i

(
π

Ueff
m2

i+
β
i

µ̄b
Ueff

mi

)
∑

[mi]
e
− 2π

β

∑
i

(
π

Ueff
m2

i+
β
i

µ̄b
Ueff

mi

) ,(20)

and the functional integration over the phase variables

γNij (τ, τ
′)

=

∫
[Dφ] e− i(φi(τ)−φj(τ ′)) e

−
∑

i
1

2Ueff

∫ β
0

dτφ̇2
i (τ)∫

[Dφ] e−
∑

i
1

2Ueff

∫ β
0

dτφ̇2
i (τ)

,(21)

the �nal formula of the correlator takes the form

γij (τ, τ
′) =

ϑ

(
π µ̄b

Ueff
+ π τ−τ ′

β , e
− 1

Ueff

2π2

β

)
ϑ

(
π µ̄b

Ueff
, e

− 1
Ueff

2π2

β

)

× exp

(
Ueff

2

∣∣∣τ − τ
′
∣∣∣− (τ − τ ′)

2

β

)
, (22)

where ϑ (z, q) is the Jacobi theta function, which comes
from the topological contribution � summation over in-
teger winding numbers. The function ϑ (z, q) is de�ned
by

ϑ (z, q) = 1 + 2
+∞∑
n=1

cos (2nz) qn
2

, (23)

and is β-periodic in the "imaginary time" as well in the
variable µ̄b/Ueff with the period of unity which empha-
sizes the special role of its integer values. After Fourier
transforming one obtains

γij (ων)

=
1

Z0

4

Ueff

∑
[mi]

e
−Ueffβ

2

∑
i

(
mi+

µ̄b
Ueff

)2

1− 4
(∑

imi +
µ̄b

Ueff
− i ωℓ

Ueff

)2 , (24)

where

Z0 =
∑
[mi]

e
−Ueffβ

2

∑
i

(
mi+

µ̄b
Ueff

)2

, (25)

is the partition function for the set of quantum rotors.
The action Eq. (12), with the topological contribution
Eq. (24), after Fourier transform, is written as

Seff

[
ψ, ψ̄

]
=

1

Nβ

∑
k,ℓ

ψ̄k (ωℓ)Γ
−1
k (ωℓ)ψk (ωℓ) , (26)

where Γ−1
k (ωℓ) = λ− tbk + γ−1 (ωℓ) is the inverse of the

propagator and tbk is the Fourier transform of the bosonic
hopping matrix elements. Within the phase coherent
state the order parameter ψB is evaluated in the ther-
modynamic limit N → ∞ by the saddle point method
δF/δλ = 0 and the uni-modular condition of the U(1)

phase variables translates into the equation

1− ψ2
B = lim

N→∞

1

Nβ

∑
k,ℓ

Γk (ωℓ) , (27)

with

Γ−1
k (ωℓ) = t̃bk=0 − t̃bk +

1

Ueff
µ̄2
b

− 1

Ueff
(µ̄b − iωℓ)

2
. (28)

The phase boundary is determined by the divergence of
the order parameter susceptibility Γk=0 (ωℓ=0) = 0

λ0 − tmax
bk=0 + γ−1 (ωℓ=0) = 0, (29)

which determines the critical value of the Lagrange pa-
rameter λ = λ0 and stays constant in the whole global
coherent phase.

The critical line equation that separates the Mott
insulator�super�uid transition, details of similar deriva-
tion of the critical line equation Eq. (27) are described
in [11], will take simple form:

1 = (30)∫ +∞

−∞

ρp/q (ξ) dξ√
2ξ̄
(
8 tb
Ub

+ µb

Ub
− η
)

1
α

tb
Ub

+ υ2
(

1
α

µb

Ub

) ,
where ξ̄ = ξ

p/q
max − ξ and ξ

p/q
max is the maximum of the

band spectrum. The renormalization parameters are de-
�ned as:

α = 1 +
U2
bf

Ub
χ′ (ω) , (31)

and

η =
Ubf

Ub
NF − 1/2. (32)

In Eq. (30) υ (µ/U) = frac (µ/U) − 1/2, where frac(x)
is the fractional part of the number. Because the
higher values of the normalized chemical potential for
the fermions µf/tf decreases χ′ (ω) and χ′′ (ω) [11], con-
sequently terms containing explicitly the average density
of fermions NF will acquire more signi�cance than these
with exclusively the inter-species interaction Ubf .

The periodicity of the phase diagram can be easily
characterized by its evolution with changing the α pa-
rameter and applied magnetic �eld (see Figs. 2 and 3).
The presence of fermions added to the system modi�es
the inter-species interaction and signi�cantly changes the
phase diagram causing both loss of the coherence or the
stability of the super�uid phase. The resulting phase di-
agram and which phase the system reaches depends on
the real part of the Lindhard function (Fig. 1). Exper-
imentally we can measure absorption spectrum (imagi-
nary part of the Lindhard function which maximum gives
us precisely the resonant frequency position) and from
that get the information whether we have reached the
resonant regime or not. In conclusion, we have studied
a mixture of bosons and spinless fermions con�ned in the
two-dimensional square lattice with synthetic magnetic
�eld imposed on the system. The strong e�ective mag-
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Fig. 2. Phase diagrams (tb/Ub�µb/Ub) for the square
(2D) lattice for α = 1 and di�erent η. Dashed line
stands for the phase boundary of one-component Bose�
Hubbard model. Within the lobes the Mott insulator
phase takes place with ΨB = 0.

Fig. 3. Phase diagrams (tb/Ub�µb/Ub) for the square
(2D) lattice for α = 0.8 and di�erent η. Dashed line
stands for the phase boundary of one-component Bose�
Hubbard model. Within the lobes the Mott insulator
phase takes place with ΨB = 0.

netic �eld realizes the Berry's phase for a moving par-
ticles with di�erent statistics. We found that reaching
a quantum-Hall regime provides a very complex dynam-
ics. Consequently the e�ective bosonic interaction to be
switched between repulsive and attractive. The experi-
mental evidence of our �ndings is feasible however precise
measurements of the magnetic �eld are requisite which
is possible with the recently developed optically synthe-
sized magnetic �eld for neutral atoms [15] where Raman
lasers applied to the gas realize a Berry's phase.
We thank T.K. Kope¢, R. Micnas and I. Spielman for

discussion and comments regarding the paper.
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