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The spin-rotationally invariant SU(2)×U(1) approach to the Hubbard model is extended to accommodate the
charge degrees of freedom. Both U(1) and SU(2) gauge transformation are used to factorize the charge and spin
contribution to the original electron operator in terms of the emergent gauge �elds. By tracing out gauge bosons
the form of paired states is established and the role of antiferromagnetic correlations is explicated. We argue that
in strongly correlated electron system collective instanton excitations of the phase �eld (dual to the charge) arise
with a great degree of stability, governed by gauge �ux changes by an integer multiple of 2π. Furthermore, it is
shown that U(1) and SU(2) gauge �elds play a similar role as phonons in the BCS theory: they act as the the
"glue" for fermion pairing.
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1. Introduction

It is believed that the ultimate complication on the
study of electronic properties of the many-body systems
is due to the inter-particle interactions. Sometimes, one
can deal away this problem by invoking the Fermi-liquid
(FL) theory [1], but there is a number of examples in-
cluding e.g. super�uidity, high temperature supercon-
ductivity, and the fractional quantum Hall e�ect, where
quantum coherence manifest in various dramatic ways
and there is a very di�cult task to describe them with the
help of the independent particle picture. A major compli-
cation in dealing with interaction e�ects is the notorious
complexity of the underlying theory. Among the elec-
tronic Hamiltonians relevant for interacting systems the
Hubbard model [2] and t�J model as its descendant [3]
are considered as those that contains the essential ingre-
dients for understanding the physics of correlated elec-
trons. An essential pre-requisite to the construction of
the theory is a solid understanding of the fundamental
symmetries involved in the problem under study. In a
many-body system boundary conditions are encoded in
the symmetries and in the Hubbard model they are rep-
resented by the charge U(1) gauge and spin rotational
SU(2) groups relevant for the occurrence of the super-
conducting and magnetic orderings. The symmetry re-
lated boundary conditions superimposed on the many-
body wavefunction are than re�ected in the topological
structure of the con�guration space. In particular for
multiply connected con�guration spaces novel features
can arise as documented for example by the Aharonov�
Böhm e�ect [4] governed by the multiply connected U(1)
group manifold.

Following Feynman path integral description of the
quantum mechanics [5] new possibilities arise when the
space of trajectories falls into disconnected pieces and the
essential question is how to weight the di�erent path.
When the homotopy class of the symmetry group gov-
erning the quantum dynamics in non-trivial as the for
the multiply connected U(2)=U(1)⊗SU(2) group man-
ifold pertinent for the Hubbard model, the amplitude
assigned to a trajectory depends not only on permuta-
tions experienced by particles as the follow the trajec-
tory but also on other aspect of their paths by which
they wind around one another. Since the homotopy class
π1[U(2)]= Z forms a set of integer winding numbers the
topological structure of the con�guration space is non-
trivial, ambiguities may arise when attempts are made
to specify a value for the phase of a wavefunction for
the whole con�guration space. Thus the problem we
are facing is that of many-body quantum mechanics on
a multiply connected con�guration space. According to
the general rules of Feynman path integrals in multiply
connected con�guration space, one has divide the space
of paths into homotopy classes parametrized by winding
numbers, and rewrite the path integral as a sum of sub-
integrals, for each of which such class, respectively [6].

In the present paper we putt this program into prac-
tice and develop a spin�charge unifying description for
interacting electrons given by the Hubbard model. It is
based on the time dependent local gauge transformations
to disentangle the Coulomb interaction. The collective
variables for charge and spin are isolated in a form of the
space�time �uctuating U(1) phase �eld and the rotating
spin quantization axis governed by the SU(2) symmetry,
respectively. As a result interacting electrons appear as
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composite objects consisting of bare fermions with at-
tached U(1) and SU(2) gauge �elds. Finally, we unravel
the link between the non-trivial topological structure of
the resulting U(2)=U(1)⊗SU(2) con�gurational space for
gauge �elds and the novel type of quantum criticality.

2. Hubbard Hamiltonian

Our starting point is the purely fermionic Hubbard
Hamiltonian Ĥ ≡ Ĥt + ĤU :

Ĥ = −t
∑

⟨rr′⟩,α

(
ĉ†α(r)ĉα(r

′) + h.c.
)

+U
∑
r

n̂↑(r)n̂↓(r). (1)

Here, ⟨r, r′⟩ runs over the nearest-neighbor (n.n.) sites,
t is the hopping amplitude, U stands for the Coulomb
repulsion, while the operator ĉ†α(r) creates an electron
with spin α =↑, ↓ at the lattice site r, where n̂α(r) =
ĉ†α(r)ĉα(r). Usually, working in the grand canonical en-

semble a term is added to Ĥ in Eq. (1) to control the
average number of electrons,

Ĥ → Ĥ − µ
∑
r

n̂(r), (2)

with µ being the chemical potential and n̂(r) = n̂↑(r) +
n̂↓(r) the number operator. It is customary to intro-
duce Grassmann �elds cα(rτ) depending on the "imag-
inary time" 0 ≤ τ ≤ β ≡ 1/kBT , (with T being
the temperature) that satisfy the anti�periodic condition
cα(rτ) = −cα(rτ + β), to write the path integral for the
statistical sum Z =

∫
[Dc̄Dc] e−S[c̄,c] with the fermionic

action

S[c̄, c] = SB [c̄, c] +

∫ β

0

dτH[c̄, c], (3)

that contains the fermionic Berry term

SB [c̄, c] =
∑
rα

∫ β

0

dτ c̄α(rτ)∂τ cα(rτ). (4)

that will paly an important role in our considerations.

3. Spin�charge reference frames

The standard scheme for dealing with interacting elec-
trons is to employ the Hubbard�Stratonovich transfor-
mation followed by a saddle-point analysis. It turns out
that a straightforward implementation of this approach
is beset with a number of problems. However, these dif-
�culties can be circumvent will in a scheme that is �rmly
rooted in the gauge symmetries of the Hubbard model.

3.1. Rotating SU(2) spin reference frame

In order to maintain spin rotational invariance, one
should consider the spin-quantization axis to be a priori
arbitrary and integrate over all possible directions in the
partition function. For this purpose the density�density
product in Eq. (1) we write, following Ref. [7], in a spin-
rotational invariant way:

HU = U
∑
r

(
1

4
n2(rτ)−

(
Ω(rτ) · S(rτ)

)2)
, (5)

where Sa(rτ) = 1
2

∑
αα′ c†α(rτ)σ

a
αα′cα′(rτ) denotes the

vector spin operator (a = x, y, z) with σa being the Pauli
matrices. The unit vector

Ω(rτ) =
[
sinϑ(rτ) cosφ(rτ), sinϑ(rτ) sinφ(rτ),

cosϑ(rτ)
]
, (6)

written in terms of polar angles labels varying in space�
time spin quantization axis. The spin�rotation invariance
is made explicit by performing the angular integration
over Ω(rτ) at each site and time. By decoupling spin
and charge density terms in Eq. (5) using auxiliary �elds
ϱ(rτ) and iV (rτ) respectively, we write down the parti-
tion function in the form

Z =

∫
[DΩ ]

∫
[DVDϱ]

∫
[Dc̄Dc] e−S[Ω ,V,ϱ,c̄,c], (7)

where [DΩ ] ≡
∏
rτk

sinϑ(rτk)dϑ(rτk)dφ(rτk)
4π is the spin-

angular integration measure. The e�ective action reads:

S [Ω , V, ϱ, c̄, c] =
∑
r

∫ β

0

dτ
(ϱ2(rτ)

U
+

V 2(rτ)

U

+iV (rτ)n(rτ) + 2ϱ(rτ)Ω(rτ) · S(rτ)
)

+SB [c̄, c] +

∫ β

0

dτHt[c̄, c]. (8)

3.2. U(1) rotor charge frame

To isolate strongly �uctuating modes generated by the
Hubbard term according to the charge U(1) symmetry
we write the �uctuating "imaginary chemical potential"
iV (rτ) as a sum of a static V0(r) and periodic function

V (rτ) = V0(r) + Ṽ (rτ) using Fourier series

Ṽ (rτ) =
1

β

∞∑
n=1

(
Ṽ (rωn)e

iωnτ + c.c.
)
, (9)

with ωn = 2πn/β (n = 0,±1,±2) being the (Bose) Mat-
subara frequencies. Now, we introduce the U(1) phase
�eld ϕ(rτ) via the Faraday�type relation

ϕ̇(rτ) ≡ ∂ϕ(rτ)

∂τ
= e− iϕ(rτ) 1

i

∂

∂τ
e iϕ(rτ) = Ṽ (rτ).(10)

Furthermore, by performing the local gauge transforma-
tion to the new fermionic variables fα(rτ):[

cα(rτ)

c̄α(rτ)

]
=

[
z(rτ) 0

0 z̄(rτ)

][
fα(rτ)

f̄α(rτ)

]
, (11)

where the unimodular parameter |z(rτ)|2 = 1 satis-
�es z(rτ) = e iϕ(rτ), we remove the imaginary term

i
∫ β

0
dτ Ṽ (rτ)n(rτ) for all the Fourier modes of the V (rτ)

�eld, except for the zero frequency. Subsequent SU(2)
transformation from fα(rτ) to hα(rτ) operators,[

f1(rτ)

f2(rτ)

]
=

[
ζ1(rτ) −ζ̄2(rτ)

ζ2(rτ) ζ̄1(rτ)

][
h1(rτ)

h2(rτ)

]
, (12)

with the constraint |ζ1(rτ)|2 + |ζ2(rτ)|2 = 1 takes away
the rotational dependence on Ω(rτ) in the spin sector.
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This is doneby means of the Hopf map

R(rτ)σzR†(rτ) = σ ·Ω(rτ), (13)

that is based on the enlargement from two-sphere S2 to
the three-sphere S3 ∼ SU(2). The unimodular constraint
can be resolved by using the parametrization

ζ1(rτ) = e−
i
2

(
φ(rτ)+χ(rτ)

)
cos

(
ϑ(rτ)

2

)
,

ζ2(rτ) = e
i
2

(
φ(rτ)−χ(rτ)

)
sin

(
ϑ(rτ)

2

)
, (14)

with the Euler angular variables φ(rτ), ϑ(rτ) and χ(rτ),
respectively. Here, the extra variable χ(rτ) represents
the U(1) gauge freedom of the theory as a consequence
of S2 → S3 mapping. One can summarize Eqs. (11) and
(12) by the single joint gauge transformation exhibiting
electron operator factorization

cα(rτ) =
∑
α′

Uαα′(rτ)hα′(rτ), (15)

where

U(rτ) = z(rτ)R(rτ), (16)

is a U(2) matrix matrix which rotates the spin-
quantization axis at site r and time τ . Eq. (15) re-
�ects the composite nature of the interacting electron
formed from bosonic spinorial and charge degrees of free-
dom given by Rαα′(rτ) and z(rτ), respectively as well as
remaining fermionic part hα(rτ).

4. E�ective phase-angular action

In this section, we de�ne a path integral representation
of the partition function. The introduction of a �uctuat-
ing spin-quantization axis and phase �eld for the charge
in the functional integral allows us to consider spin and
charge �uctuations on equal footing.

4.1. Tracing massive variables

The expectation value of the static (zero frequency)
part of the �uctuating electrochemical potential V0(r)
we calculate by the saddle point method to give

V0(r) = i

(
µ− U

2
nh

)
≡ i µ̄, (17)

where µ̄ is the chemical potential with a Hartree shift
originating from the saddle-point value of the static
variable V0(r) with nh = nh↑ + nh↓ and nhα =
⟨h̄α(rτ)hα(rτ)⟩. Similarly in the magnetic sector

ρ(rτ) =

{
(−1)r∆c

±∆c
, (18)

where ∆c = U⟨Sz(rτ)⟩ sets the magnitude for the Mott-
charge gap [8]. The two choices delineated in Eq. (18)
correspond to the saddle point of the "anti�eromagnetic"
(with staggering ∆c) or "ferromagnetic type". Note that
the notion ferromagnetic (anti�eromagnetic)here does
not mean an actual long-range ordering � for this the
angular spin-quantization variables have to be ordered as
well. In the new variables the action in Eq. (8) assumes

the form

S
[
Ω , ϕ, ϱ, h̄, h

]
= SB [h̄, h] +

∫ β

0

dτHΩ ,ϕ[ρ, h̄, h]

+S0 [ϕ] + 2
∑
r

∫ β

0

dτA(rτ) · Sh(rτ), (19)

where Sh(rτ) =
1
2

∑
αγ h̄α(rτ)σαγhγ(rτ). Furthermore,

S0[ϕ] =
∑
r

∫ β

0

dτ

(
ϕ̇2(rτ)

U
+

1

i

2µ

U
ϕ̇(rτ)

)
, (20)

stands for the kinetic and Berry term of the U(1) phase
�eld in the charge sector. The SU(2) gauge transforma-
tion in Eq. (12) and the fermionic Berry term in Eq. (4)
generate SU(2) potentials given by

R†(rτ)∂τR(rτ) = R†
(
φ̇

∂

∂φ
+ ϑ̇

∂

∂ϑ
+ χ̇

∂

∂χ

)
R

= −σ ·A(rτ), (21)

where

Ax(rτ) =
i

2
ϑ̇(rτ) sinχ(rτ)

− i

2
φ̇(rτ) sin θ(rτ) cosχ(rτ),

Ay(rτ) =
i

2
ϑ̇(rτ) cosχ(rτ)

+
i

2
φ̇(rτ) sin θ(rτ) sinχ(rτ)

Az(rτ) =
i

2
φ̇(rτ) cosϑ(rτ) +

i

2
χ̇(rτ), (22)

are the SU(2) gauge potentials.

4.2. Fermionic action

The fermionic sector, in turn, is governed by the e�ec-
tive Hamiltonian

HΩ ,ϕ =
∑
r

ϱ(rτ)[h̄↑(rτ)h↑(rτ)− h̄↓(rτ)h↓(rτ)]

−t
∑

⟨r,r′⟩

∑
αγ

[
U†(rτ)U(r′τ)

]
αγ

h̄α(rτ)hγ(r
′τ)

−µ̄
∑
rα

h̄α(rτ)hα(rτ), (23)

The result of the gauge transformations is that we have
managed to cast the strongly correlated problem into a
system of mutually non-interacting fermions, submerged
in the bath of strongly �uctuating U(1) and SU(2) �elds
whose dynamics is governed by the energy scale set by
the Coulomb interaction U coupled to fermions via hop-
ping term and with the Zeeman-type contribution with
the massive �eld ϱ(rτ).

In analogy to the charge U(1) �eld the SU(2) spin
system exhibit emergent dynamics. By integrating out
fermions the last term in Eq. (19) will generate the ki-
netic term for the SU(2) rotors
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S0[Ω ] = −1

2
4
∑
rr′

∫ β

0

dτdτ ′
∑
ab

⟨Aa(rτ)Ab(r′τ ′)⟩

×
∑
r′

⟨Sa
h(rτ)S

b
h(r

′τ ′)⟩

−2
∑
rr′

∫ β

0

dτ⟨A(rτ) · Sh(r
′τ ′)⟩, (24)

with

⟨Sa
h(rτ)S

b
h(r

′τ ′)⟩ = −1

4
2δab

1

Es
,

⟨Sz
h(rτ)⟩ = Tr

(
σzG(rτ, rτ)

)
=

∆c

U
. (25)

For example, in the anti�eromagnetic (AF) phase, at
the half-�lling, it assumes the staggered form ϱ(rτ) =
∆c(−1)r with ∆c being the charge gap ∆c ≈ U/2 for
U/t ≫ 1. At zero temperature

lim
T→0

1

Es
=

∆2
c

2E3
k
, (26)

so that, in the limit U/t ≫ 1 one obtains Es ≈ 2∆c = U .
However, a nonzero value of ∆c does not imply the
existence of AF long�range order. For this the angu-
lar degrees of freedom Ω(rτ) have also to be ordered,
whose low-lying excitations are in the form of spin waves.
Therefore the kinetic term in the spin sector becomes

S0[Ω ] = − 1

Es

∑
r

∫ β

0

dτ⟨A(rτ) ·A(rτ)⟩, (27)

so that the total kinetic energy S[Ω , ϕ] = S0[ϕ] + S0[Ω ]
for U(1) and SU(2) rotors is

S0[Ω , ϕ] =
∑
r

∫ β

0

dτ

(
ϕ̇2(rτ)

U
+

1

i

2µ

U
ϕ̇(rτ)

+
1

4Es

(
ϑ̇2(rτ) + φ̇2(rτ) + χ̇2(rτ)

+2φ̇(rτ)χ̇(rτ) cosϑ(rτ)
)

+
∆c

iU

(
φ̇(rτ) cosϑ(rτ) + χ̇(rτ)

))
. (28)

The distinctive feature of Eq.(28) is th presence of the ge-
ometric Berry contributions that signify topological fea-
tures of the underlying �eld theory.

5. Topological features

5.1. Statistical theta terms

In the preceding paragraphs we have shown that a
theory of strongly interacting electrons can be trans-
formed to an equivalent description of weakly interacting
fermions which are coupled to the ��uxes" of the strongly
�uctuating U(2) gauge �eld. In regard to the non-
perturbative e�ects, we realized the presence of an ad-
ditional parameter, the topological angle θc/2π ≡ 2µ/U ,
which related to the chemical potential in a geometric
Berry phase term

Sc
B =

θc
2π i

∑
r

∫ β

0

dτ ϕ̇(rτ). (29)

Since topologically the U(2) group is equivalent to a cir-
cle, the con�guration space for the �eld phase �led con-
sists of topological sectors, each characterized by integer
m which is the number of times the phase �eld ϕ(rτ)
winds one goes around the circle boundary. The associ-
ated topological e�ects arise as stable, non-perturbative,
collective excitations of the phase �eld (dual to the
charge), which carry novel topological characteristics.
These are the winding numbers of U(1) group: m(r) ≡
1
2π

∫ β

0
dτ ϕ̇(rτ) that become topological conserved quan-

tities. Similarly in the spin sector a Berry phase term
arises

Ss
B =

θs
2π i

∑
r

∫ β

0

dτ
(
φ̇(rτ) cosϑ(rτ) + χ̇(rτ)

)
, (30)

with the theta term θs/2π = ∆c/U that is related to the
Mott gap. Here, the integral of the �rst term in Eq. (30)
has a simple geometrical interpretation as it is equal to
a solid angle swept by a unit vector Ω(ϑ, φ) during its
motion.

5.2. Topological charge and the electron density

In addition to the Coulomb energy U and temperature,
the chemical potential µ plays a crucial role in Mott tran-
sition, since it controls the electron �lling ne. An imme-
diate implication of the composite nature of the electrons
is that the electron occupation number (i.e. the average
number of of electrons per site in the Cu�O plane)

ne =
1

N

∑
rα

⟨c̄α(rτ)cα(rτ)⟩ , (31)

consists of the fermion occupation coming from the
fermionic part of the composite and a topological con-
tribution resulting from the "�ux-tube" attachment:⟨∑

α

c̄α(rτ)cα(rτ)

⟩
=

⟨∑
α

f̄α(rτ)fα(rτ)

⟩

+
2

iU

⟨
∂ϕ(rτ)

∂τ

⟩
. (32)

The appearance of the topological contribution in
Eq. (32) is not surprising given the fact that "statisti-
cal angle" depends on the chemical potential and the
occupation number is just its conjugate quantity. Owing
that the U(1) topological charge (the winding number)
is given by

m(r) =
1

2π

∫ β

0

dτ ϕ̇(rτ)

=
1

2π

∫ ϕ0(r)+2πm(r)

ϕ0(r)
dϕ(rτ), (33)

the mean value of the density of topological charge can
be written after performing Legendre transformation as

nb =
2µ

U
+

2

U

⟨
1

i

∂ϕ(rτ)

∂τ

⟩
. (34)

Therefore, the average electron occupation numberne is
given by
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ne = nf + nb −
2µ

U
. (35)

In the limit of strong (weak) correlations ne interpolates
between topological nb (fermionic nf ) occupation num-
bers. Clearly, in the large-U limit µ → nfU/2, so that
ne → nb and the system behaves as governed entirely by
density of topological charge.

6. Pairing interaction

Now we show that U(1) and SU(2) emergent gauge
�elds, the collective high energy modes in the Hubbard
system, take over the task which was carried out by
phonons in BCS superconductors. In order to obtain
an e�ective interaction among fermions we have to inte-
grate out all the bosonic modes given by z̄(rτ), z(r′τ)

and R†(rτ), R(r′τ) �elds. To this end we write the

partition function as Z =
∫
[Dh̄Dh]e−S[h̄,h], where the

e�ective fermionic action is

Seff [h̄, h] = − ln

∫
[DϕDΩ ] e−S[Ω ,ϕ,h̄,h]. (36)

The expression in Eq. (36) generates a cumulant series
when expanded with respect to the hopping variable t.
As a result of averaging the e�ective fermionic action can
be written as follows:

Seff [h̄, h] = S
(1)
t [h̄, h] + S(2)[h̄, h], (37)

where, the hopping term assumes the conventional form
that is diagonal in the spin indices

S
(1)
t [h̄, h] = −t̃

∑
⟨rr′⟩,α

∫ β

0

dτ h̄α(rτ)hα(r
′τ), (38)

where t̃ = tgc(d)gs(d), is the renormalized hopping, with
gc(d) = ⟨z̄(rτ)z(r′τ)⟩ and gs(d) =

∑
α ⟨ζα(rτ)ζα(r′τ)⟩

being the Gutzwiller-like charge and spin renormalization
factors. The second order term is given by

S(2)[h̄, h] =
∑
⟨rr′⟩

∫ β

0

dτ
(
γ1n(rτ)n(r

′τ)

−γ2Āh(rτr
′τ)Ah(rτr

′τ)
)
, (39)

where

Ah(rτr
′τ) =

h↑(rτ)h↓(r
′τ)− h↓(rτ)h↑(r

′τ)√
2

,

Āh(rτr
′τ) =

h̄↓(r
′τ)h̄↑(rτ)− h̄↑(r

′τ)h̄↓(rτ)√
2

, (40)

are the bond operators relevant for a singlet pairing.
The rotational invariance of the right-hand side in

Eq. (39) is manifest since

−Āh(rτr
′τ)Ah(rτr

′τ) = Sh(rτ) · Sh(r
′τ)

−1

4
nh(rτ)nh(r

′τ). (41)

The coe�cients γ1 and γ2 are given by

γ1 =
4t2

U

(
f2(d) +

1

2
g2(0)

)
,

γ2 =
4t2

U

(
3f2(d)

)
, (42)

where f and g are the correlation functions:

g(r − r′) = −
⟨
ζα(rτ)ζ̄α(r

′τ)
⟩
,

f(r − r′) = ⟨ζα(rτ)ζα(r′τ)⟩ , (43)

that can be readily evaluated using the propagator of the

Fig. 1. Pairing interaction γ2 normalized to the hop-
ping parameter t (upper curve) and the antiferromag-
netic exchange parameter J = 4t2/U (lower curve) as
a function of U/t calculated at zero temperature and
half-�ling µ̄ = 0 for the two-dimensional Hubbard model
with nearest-neighbors hopping.

ζ-�elds. The e�ective non-retarded interaction contain-
ing γ2 in front of the Ā(rτr′τ)A(rτr′τ) term is nega-
tive and therefore constitutes the attractive potential for
fermion pairing. We can see that the coe�cient γ2 is
not just given by the bare AF exchange J = 4t2/U but
is renormalized downwards by the quantity that is re-
lated to the anti�eromagnetic spin sti�ness. The result
for γ2 is plotted in Fig. 1. Note that the pairing inter-
action survives in rather narrow range of the Coulomb
interaction 1.17 < U/t < 1.41. This result suggests that
superconductivity in the Hubbard model, if possible, rep-
resents a rather delicate balance between kinetic energy
and Coulomb interaction.

7. Summary

For strongly correlated systems the route leading from
the microscopic Hamiltonian to the appropriate e�ective
description is rather non trivial. This means that the sys-
tem has a simple description only in terms of "particles"
or other objects, which are very di�erent from the micro-
scopic constituents. In this paper we have observed that
the important symmetries of the Hubbard model given
by by the charge U(1) gauge and spin rotational SU(2)
groups, that relevant for the occurrence of the supercon-
ducting and magnetic orderings, imply that the quantum
dynamics is governed non-trivially by the multiply con-
nected U(2)=U(1)⊗SU(2) group manifold. As a result
interacting electrons appear as a composite objects con-
sisting of bare fermions with attached gauge �elds. We



Theoretical Approach to Strongly Correlated Systems . . . 743

have obtained the e�ective action with the Coulomb in-
teraction that contain topological contributions to the
e�ective action. These Berry terms are instrumental for
identifying the "quantum protectorates" � stable states
of matter whose generic low energy properties are insen-
sitive to microscopics [9]. Therefore, new type of quan-
tum numbers must be invoked to explain topologically
induced quantum critical point (QCP) in cuprates and
the associated pinning of the chemical potential. Topo-
logical e�ects arise as stable, non-perturbative, collec-
tive excitations of the phase �eld (dual to the charge),
which carry novel topological characteristics. These are
the winding numbers of U(1) group that become topo-
logical conserved quantities. It is exactly the appearance
of these topological charges that render the system "pro-
tected" against small changes of the hamiltonian's pa-
rameters. This novel conservation does not arise just out
of a symmetry of the theory (as "conventional" conser-
vation laws based on Noether's theorem) but it is a con-
sequence of the connectedness, i.e. topology of the phase
space, related to the topological properties of the associ-
ated symmetry group [10]. In conclusion, we presented
a �eld-theoretic description of a microscopic model that
reveals an intimate relationship between the spin-SU(2)
and charge-U(1) symmetry and pairing. We found that
the maximal strength of the e�ective pairing interaction
parameter is observed in a rather narrow range of U/t.

Finally we observe that superconductivity demands more
than just paired fermions � it also requires phase coher-
ence in the charge sector distinguished by the variables
z(rτ) = e iϕ(rτ) to have the phase sti�nesses that are
responsible for the actual superconducting state.
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