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We present our preliminary studies of an e�ective model of a superconductor with short coherence length
involving magnetic interactions. The Hamiltonian considered consists of (i) the e�ective on-site interaction U ,
(ii) the intersite magnetic exchange interactions (Jz, Jxy) between nearest-neighbors and (iii) the intersite charge
exchange term I, determining the hopping of electron pairs between nearest-neighbor sites. In the analysis of the
phase diagrams and thermodynamic properties of this model for half-�lling (n = 1) we have adopted the variational
approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-�eld
approximation. One �nds that the system considered can exhibit very interesting multicritical behaviors (including
tricritical, critical-end and bicritical points) caused by the competition between magnetism and superconductivity,
even for n = 1. Our investigations show that, depending on the values of interaction parameters, the system at
half-�lling can exhibit three homogeneous phases: superconducting (SS), (anti-)ferromagnetic (F) and nonordered
(NO). The transitions between ordered phases (SS, F) and the NO phase can be �rst order as well as second
order ones, whereas SS�F transition is �rst order one. Temperature dependencies of the order parameters and
thermodynamic properties of the system at the sequence of transitions: SS→F→NO with increasing temperature
for J/I = 0.3, U/I0 = 0.69 and n = 1 are also presented.

PACS: 71.10.Fd, 71.10.�w, 74.20.�z, 74.81.�g, 75.30.Fv

1. Introduction

There has been much interest in superconductivity
with very short coherence length. This interest is due
to its possible relevance to high temperature supercon-
ductors (the cuprates, doped bismuthates, fullerenes and
iron-based) and also to the several other exotic supercon-
ducting materials (for a review, see [1, 2] and references
therein). It can also give relevant insight into a behavior
of strongly bounded fermion pairs on the optical lattices.
The interplay and competition between superconduc-

tivity and magnetic orderings is currently under intense
investigations (among others in iron chalcogenides and
cuprates, e.g. Refs. [3�5] and references therein). A con-
ceptually simple model for studying that competition will
be studied in this report.
The Hamiltonian considered has the following form:

Ĥ = U
∑
i

n̂i↑n̂i↓ − I
∑
⟨i,j⟩

(
ρ̂+i ρ̂

−
j + ρ̂+j ρ̂

−
i

)
−2J

∑
⟨i,j⟩

ŝzi ŝ
z
j − µ

∑
i

n̂i, (1)

where n̂i =
∑

σ n̂iσ, n̂iσ = ĉ+iσ ĉiσ, ρ̂
+
i = (ρ̂−i )

† = ĉ+i↑ĉ
+
i↓,

ŝzi = 1
2
(n̂i↑ − n̂i↓). ĉiσ and ĉ+iσ denote annihilation and

creation operators of an electron with spin σ =↑, ↓ at the
site i, which satisfy canonical anticommutation relations

{ĉiσ, ĉ+jσ′} = δijδσσ′ ,

{ĉiσ, ĉjσ′} = {ĉ+iσ, ĉ
+
jσ′} = 0, (2)
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where δij is the Kronecker delta.
∑

⟨i,j⟩ indicates the sum

over nearest-neighbor sites i and j independently. U is
the on-site density interaction, I is the intersite charge
exchange interaction between nearest neighbors and J is
the Ising-like magnetic interaction between nearest neigh-
bors. µ is the chemical potential, depending on the con-
centration of electrons:

n =
1

N

∑
i

⟨n̂i⟩, (3)

with 0 ≤ n ≤ 2 and N is the total number of lattice sites.
There are two competitive interaction parameters of

the model: (i) the pair hopping interaction I, determin-
ing the electron pair mobility and responsible for the
long-range superconducting order (local pairing mecha-
nism) and (ii) the Ising-like interaction J between near-
est neighbors responsible for magnetism in the system.
The on-site density�density interaction U contributes
(together with I) to the pair binding energy by reduc-
ing (U > 0) or enhancing (U < 0) its value. Moreover,
repulsive U > 0 favors magnetic ordering. To simplify
our analysis we do not include in Hamiltonian (1) the
single electron hopping term (

∑
i,j tij ĉ

+
iσ ĉjσ) as well as

other inter-site interaction terms. This assumption cor-
responds to the situation when single particle mobility
is much smaller than the pair mobility and can be ne-
glected.
The interactions U , I and J will be treated as the ef-

fective ones and will be assumed to include all the possi-
ble contributions and renormalizations like those coming
from the strong electron�phonon coupling or from the
coupling between electrons and other electronic subsys-
tems in solid or chemical complexes [1].
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Ferromagnetic XY-order of pseudospins ρ̂i (for I > 0)
corresponds to the SS phase (s-pairing superconducting),
whereas the antiferromagnetic XY-order (for I < 0) �
to the Sη phase (η-pairing superconducting). For tij = 0
there is a well known isomorphism between the SS and
Sη cases (with an obvious rede�nition of the order pa-

rameter: ∆ = ∆SS = 1
N

∑
i ⟨ ˆrho

−
i ⟩, for I > 0 and

∆ηS = 1
N

∑
i exp(iQ ·Ri)⟨ρ̂−i ⟩, for I < 0, Q is half of the

smallest reciprocal lattice vector) for lattices consisting
of two interpenetrating sublattices such as for example
SC or BCC lattices. One should also notice that in the
absence of the single electron hopping term, ferromag-
netic (J > 0) interactions are simply mapped onto the
antiferromagnetic cases (J < 0) by rede�ning the spin di-
rection on one sublattice in lattices decomposed into two
interpenetrating sublattices. Thus, we restrict ourselves
to the case of I > 0 and J > 0.
We have performed extensive study of the phase di-

agrams of model (1) for arbitrary n and µ [6]. In the
analysis we have adopted a variational approach (VA),
which treats the onsite interaction term (U) exactly and
the intersite interactions (I, J) within the mean-�eld ap-
proximation (MFA). In this paper we present our prelim-
inary results for the half-�lling (n = 1).
Model (1) has been analyzed within VA only for par-

ticular cases: (i) J = 0 [7�11] and (ii) I = 0 [12, 13]
till now. The rigorous results for I = 0 in ground state
have been also obtained [14]. Some preliminary study of
the I = 0 case in �nite temperatures using Monte Carlo
simulations has also been done for a square lattice [13].
The ferromagnetic (F) phase is characterized by

nonzero value of the magnetic order parameter (magneti-
zation) de�ned asm = (1/N)

∑
i ⟨ŝzi ⟩ (and∆ = 0), in the

superconducting (SS) phase the order parameter ∆ ̸= 0
(and m = 0) and in the nonordered (NO) phase m = 0
and ∆ = 0.
Within the VA the intersite interactions are decou-

pled within the MFA, what let us �nd a grand canonical
potential per site ω(µ) (or free energy per site f(n) =
ω(µ) + µn) in the grand canonical ensemble. One can
also calculate the averages: n, ∆ and m, what gives a set
of three non-linear self-consistent equations (for homoge-
neous phases). This set for T > 0 is solved numerically
and one obtains ∆, m, and n (or µ) when µ (or n) is
�xed. It is important to �nd a solution corresponding
to the lowest ω(µ) (or f(n)). For n = 1 one obtains
µ = U/2 and two equations for ∆ and m need to be
solved numerically.
We also introduce the following denotation: I0 = zI,

J0 = zJ , where z is the number of nearest neighbors.

2. Results and discussion

There are two well de�ned limits of model (1): (i) U →
−∞ favoring superconductivity and (ii) U → +∞, where
only magnetic orderings can appear in the system.
For U → −∞ (states with single occupancy are ex-

cluded and only local pairs can exists in the system)

the model is equivalent with the hard-core charged bo-
son model on the lattice [9, 15, 16]. In this limit the
SS�NO transition is second order one and is to the NO
phase being a state of dynamically disordered local pairs.
The SS�NO transition temperatures increase monotoni-
cally with decreasing |n− 1|. The maximum value of the
transition temperature is kBT/I0 = 1 for n = 1 [9, 11].
In the opposite limit (i.e. U → +∞) the double oc-

cupied sites are excluded and only the magnetic states
can occur on the phase diagram [12, 13]. At su�ciently
low temperatures the homogeneous phases are not states
with the lowest free energy and the PS state are stable
(if n ̸= 1). On the phase diagram there is a second or-
der line at high temperatures, separating the F and NO
phases, whereas �rst order transition takes place at lower
temperatures, leading to a phase separation of the F and
NO phases. The critical point for the phase separation
(tricritical point) lies on the second order F�NO line and
it is located at kBT/J0 = 1/3 and n = 1/3 [12]. The F�
NO (second order) transition temperature decreases with
increasing |n− 1| and its maximum value is kBT/J0 = 1
for n = 1 [13].

2.1. The phase diagrams at half-�lling

A few representative kBT/I0 vs. U/I0 phase diagrams
of model (1) evaluated for various ratios of J/I at half-
�lling (n = 1) are presented in Fig. 1.
The phase diagram kBT/I0 vs. U/I0 for J/I = 0.3 and

n = 1 is shown in Fig. 1a. Two ordered phases: the
SS phase and the F phase are separated by �rst order
boundary on the diagram. Both order parameters change
discontinuous at the SS�F transition. With increasing
U/I0 the SS�NO transition temperature decreases from
kBT/I0 = 1 at U/I0 → −∞. At U/I0 = 2

3 ln(2) ≃
0.462 and kBT/I0 = 1/3 the transition changes its type
from second order one to �rst order one resulting in the
tricritical point T on the phase diagram. The F�NO
transition temperature is slightly dependent on U/I0 and
increases to kBT/I0 = 0.3 (kBT/J0 = 1) at U/I0 → +∞.
The F�NO second order line ends at critical-end point E
on the �rst order boundary of the SS phase occurrence.
The possible sequences of transitions with increasing

temperatures and the transition orders of them are listed
below (for J/I = 0.3):

(i) SS→NO: second order, for U/I0 < 0.46 and �rst
order, for 0.46 < U/I0 < 0.63,

(ii) SS→F→NO: �rst order and second order, respec-
tively, for 0.63 < U/I0 < 0.7,

(iii) F→NO: second order, for U/I0 > 0.7.

The phase diagram for J/I = 0.51 is qualitatively dif-
ferent than that for J/I = 0.3. For J/I = 0.51 the
system exhibits bicritical behavior (Fig. 1b) in contrary
to the tricritical behavior (and occurrence of E-point)
for J/I = 0.3. Similarly as for J/I = 0.3, the SS�F
transition is �rst order one while the SS�NO and F�NO
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Fig. 1. Phase diagrams kBT/I0 vs. U/I0 at half-�lling
(n = 1) for (a) J/I = 0.3, (b) J/I = 0.51 and
(c) J/I = 3. Dotted and solid lines indicate �rst order
and second order boundaries, respectively. T , E and
B denote tricritical, critical-end and bicritical points,
respectively.

transitions are second order ones. The two second order
boundaries and the �rst order boundary merge at bicrit-
ical point B.
The system exhibits the tricritical behavior for J/I <

0.5, whereas the bicritical behavior occurs for 0.5 <
J/I < 2. For J/I > 2 the system exhibits tricritical
behavior again, however the tricritical point T is located
at the F�NO line at U/J0 = − 2

3 ln(2) ≃ −0.462 and
kBT/J0 = 1/3 (cf. Fig. 1c). For J/I > 2 the F�NO
transition can be second order (for U/J0 > −0.46) as
well as �rst order (for U/J0 < −0.46). Notice that the
axis in Fig. 1 are normalized by I0, not by J0.
One should notice that, for any J/I, with increasing

U/I0 the SS�NO transition temperature decreases mono-
tonically from kBT/I0 = 1 at U → −∞, whereas the F�
NO transition temperature is an increasing function of
U/I0 (to its maximum kBT/J0 = 1 at U → +∞).
Let us concentrate now on temperature dependencies

of the order parameters and thermodynamic properties
of the system at the sequence of transitions: SS→F→NO
for J/I = 0.3, U/I0 = 0.69 and n = 1.

2.2. The order parameters

The temperature dependencies of the order parame-
ters: ∆ and m for J/I = 0.3, U/I0 = 0.69 and n = 1 are

Fig. 2. Temperature dependence of (a) superconduct-
ing order parameter |∆| and (b) magnetic order param-
eter m for J/I = 0.3, U/I0 = 0.69 and n = 1.

presented in Fig. 2. It is clearly seen that at the SS�F
transition (at kBTc1/I0 = 0.16) the both order parame-
ters: superconducting order parameter ∆ and magneti-
zation m change discontinuously. In the SS phase ∆ ̸= 0
andm = 0 whereas in the F phasem ̸= 0 and∆ = 0. The
F�NO transition (at kBTc2/I0 = 0.24) is connected with
a continuous decay of m at the transition temperature.

2.3. The thermodynamic properties

Calculating the free energy per site f one can obtain
thermodynamic characteristics of the system for arbi-
trary temperature. The double occupancy per site D
is de�ned as:

D =
1

N

∑
i

⟨n̂i↑n̂i↓⟩ =
(
∂f

∂U

)
T

(4)

and it is related with the local magnetic moment γ by
the following formula:

γ =
1

N

∑
i

⟨ŝzi ⟩ =
1

2N

∑
i

⟨|n̂i↑ − n̂i↓|⟩

=
1

2
n−

∑
i

⟨n̂i↑n̂i↓⟩ =
1

2
n−

(
∂f

∂U

)
T

=
1

2
n−D, (5)

because |n̂i↑ − n̂i↓| = (n̂i↑ − n̂i↓)
2 = n̂i↑ + n̂i↓ − 2n̂i↑n̂i↓,

n̂2
iσ = n̂iσ = 0, 1 and |n̂i↑ − n̂i↓| = 0, 1.
The entropy s and the speci�c heat c can be derived

as:

s = − ∂f

∂T
, c = −T

∂2f

∂T 2
. (6)

The temperature dependencies of the thermodynamic pa-
rameters for J/I = 0.3, U/I0 = 0.69 and n = 1 are shown
in Fig. 3.
The concentration of paired electrons np = 2D (nor-

malized to the total electron concentration n) as a func-
tion of temperature is presented in Fig. 3a. At the SS�F
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Fig. 3. Thermodynamic parameters (a) the concentra-
tion of paired electrons np/n = 2D/n, (b) the entropy
s and (c) the speci�c heat c as a function of kBT/I0 for
J/I = 0.3, U/I0 = 0.69 and n = 1.

transition large amount of electron pairs is destroyed.
Thus np has a sharp break at the SS�F transition tem-
perature Tc1 and a substantial fraction of single particles
exists above Tc1. As temperature is lowered, the conden-
sate growths both from a condensation of pre-existing
pairs and from binding and condensation of single parti-
cles. At the F�NO transition (at Tc2) np is continuous.
In the NO phase it increases to np → 0.5 at T → +∞
(two electrons at the site is one of four equal probable
con�gurations at the site and n = ⟨n̂i⟩ = 1).
The temperature dependencies of the entropy s and

the speci�c heat c are shown in Figs. 3b and c, respec-
tively. s increases monotonically with increasing T . At
Tc1 the entropy s is discontinuous whereas it is continu-
ous at Tc2. One can notice that in the high-temperature
limit the entropy s/kB → ln(4) ≈ 1.386 (there are four
possible con�gurations at each site). The peak in c(T ) is
associated with the �rst order transition (at Tc1), while
the λ-point behavior is typical for the second order tran-
sition (at Tc2).

3. Final remarks

We have studied a simple model of a magnetic super-
conductor with very short coherence length (i.e. with the
pair size being of the order of the radius of an e�ective
lattice site) and considered the situation where the single

particle mobility is much smaller than the pair mobility
and can be neglected.
One has found that the system considered for n = 1 ex-

hibits various multicritical behaviors (determined by the
ratio J/I) including tricritical, critical-end and bicritical
points. It has been shown that, depending on the values
of interaction parameters, three homogeneous phases: su-
perconducting, (anti-)ferromagnetic and nonordered oc-
cur on the phase diagrams of model (1) at half-�lling.
The transitions between ordered phases (SS, F) and the
NO phase can be �rst order as well as second order ones,
whereas the SS�F transition is �rst order one. For n ̸= 1
several types of phase separated states could be also sta-
ble in de�nite ranges of model parameters [6].
The other result of the interplay between magnetism

and superconductivity could be appearance of triplet
pairing [17]. Such a solution could appear together
with ferromagnetic spin ordering. However, in model (1)
which assumes tij = 0 such a state cannot be found. To
investigate the possibility of occurrence of a supercon-
ducting state with triplet pairing, the model should be
extended to the case of �nite bandwidth (tij ̸= 0) and
be analyzed taking into account intersite pairing (in par-
ticular triplet pairing), e.g. using Hartree�Fock broken
symmetry framework [17�19].
The mean-�eld approximation used to the intersite

term is best justi�ed if the Iij and Jij interactions are
long-ranged or if the number of nearest neighbors is rel-
atively large. The derived VA results are exact in the
limit of in�nite dimensions d → +∞, where the MFA
treatment of the intersite interactions I and J terms be-
comes the rigorous one.
Let us point out that in the MFA, which does not take

into account collective excitations, one obtains the same
results for the U�I�Jz model, i.e. model (1), and the U�
I�Jxy model, where the term 2J

∑
ŝzi ŝ

z
j is replaced with

J
∑

(ŝ+i ŝ
−
j + ŝ+j ŝ

−
i ), describing interactions between xy-

components of spins at neighboring sites, ŝ+i = ĉ+i↑ĉi↓ =

(ŝ−i )
†. In both cases the self-consistent equations have

the same form, only a magnetization along the z-axis
becomes a magnetization in the xy-plane [12].
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