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Using self-consistent �eld theory in spherical unit cells of various dimensionality, D = 1, 2, 3, and 4, we
calculate phase diagram of a diblock, A-b-B, copolymer melt in 4-dimensional space, d = 4. The phase diagram is
parameterized by the chain composition, f , and incompatibility between A and B, quanti�ed by the product χN .
We predict 4 stable nanophases: layers, cylinders, 3D spherical cells, and 4D spherical cells. We also calculate
order�disorder and order�order transition lines. In the strong segregation limit, that is for large χN , the order�order
transition compositions are determined by the strong segregation theory in its simplest form, for D = 1, 2, 3, and 4.

PACS: 82.35.Jk

1. Introduction

It is known that dimension, d, of a polymer system
can play a signi�cant and illuminating role. For exam-
ple, single polymer chain in good solvent has the scal-
ing properties of the self-avoiding walk (SAW) with the
squared end-to-end distance varying as R2 ∼ N2ν , where
ν ≈ 0.588 for large N (often approximated as 0.6) for
d = 3 [1], and N is the degree of polymerization (num-
ber of segments). This is a strongly �uctuating system
which cannot be treated successfully by the mean-�eld
(MF) approach. However, as d is increased to 4, and
higher dimensions, the excluded volume interactions be-
come a relatively small perturbation and the exponent ν
becomes 1/2 which is characteristic for free random walks
(not self-avoiding) and free di�usion. Following Flory's
idea it can be shown [1], in a simple analysis, that

ν =
3

d+ 2
, (1)

which works remarkably well for d = 1, 2, 3, and 4
yielding 1, 3/4, 3/5, and 1/2, respectively. For a sin-
gle chain the excluded volume interaction are suppressed
for higher d, but the system still strongly �uctuates with
ν = 1/2.
In dense polymer system d can also play an important

role, although both excluded volume interactions and
�uctuations are suppressed for most of thermodynamic
states. The suppression (screening) of excluded volume
interactions, resulting in scaling exponent ν = 1/2, is
known as Flory's theorem and is well established for
d = 3 [1]. The �uctuations are small, unlike in sim-
ple �uids in 3d, because the environment is uniform and
the coordination number, varying as

√
N , is large for

long polymer chains [2]. While MF works remarkably
well for most conditions, there are some exceptions, for
example the composition �uctuations for homopolymer
blends (vicinity of the macrophase separation) and for
copolymer melts (near the order�disorder transition).
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Diblock copolymer (DBC), A-b-B, melts can
self-assemble in 3d into various spatially-ordered
nanophases, such as layers, L, hexagonally packed
cylinders, C, gyroid nanostructures, G, with the Ia3d
symmetry, and cubically packed (either body-centered or
closely packed) spherical cells S, depending on the chain
composition, f (f is the fraction of A-segments; 1 − f
is the fraction of B-segments), degree of polymerization
(number of segments), N , and the temperature-related
χ parameter [2, 3]. Recently, an additional O70-phase
has been reported [4, 5], but it is stable in a very small
region of the phase diagram. Those nanophases can be
transformed into a disordered phase, for example, upon
heating. It is of great interest to determine a phase dia-
gram of such melts exhibiting order�disorder transition
(ODT) lines, also referred to as binodals of microphase
separation transition (MST), and order�order transition
(OOT) lines. This task has been largely achieved for
3-dimensional (bulk) diblock melts by accumulating
results from numerous experimental and theoretical
studies [6�13], also for 2d diblock copolymer melts [14].

The L, C, and S nanophases are known as classical,
whereas G and O70 cubic nanophases are referred to
as non-classical, or sometimes complex. The Wigner�
Seitz cell of a classical phase can be approximated by
D-dimensional sphere, SD, both in the real r-space and
the reciprocal k-space.

Within this approximation, known as unit cell approxi-
mation (UCA), the L, C, S nanophases correspond to S1,
S2, and S3, respectively, and the spacial distribution of
chain segments can be mapped with a single radial vari-
able, r, as shown in Table I. The classical phases can
be easily generalized to higher dimensions, in particular
for d = 4 we have 4 nanophases SD, with dimensional-
ity, D, ranging from 1 to 4. For d = 3 the non-classical
phases are known to be stable in the vicinity of the ODT
lines. Whether they are stable away from the ODT,
in the strong segregation regime, is not entirely clear.
There is some evidence that the G phase can exist up to
a very strong segregation [15, 16], but it is not conclu-
sive since it is based on MF calculations. Therefore one
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can conjecture that the stability of non-classical phases
is enhanced by �uctuations (which are signi�cant in the
vicinity of the ODT), and the non-classical phases may
not survive at very high values of χN . We also expect
that the strength of �uctuations should diminish with
increasing d. If the above conjecture is correct, then we

should expect that, as the �uctuations grow weaker with
increasing d, the non-classical phases should be less sta-
ble, or perhaps totally unstable for large d's. Could it
be that the �uctuations can create the relative richness
of non-classical nanophases for d = 3 and fewer complex
phases for higher d's?

TABLE I

Unit cell equations of D-dimensionality; equations are supplemented with the unconstrained variables for corresponding
d's (2, 3, 4 and 5); * indicates the absence of unconstrained variables; imp indicates that the nanophase for this d is
impossible.

D Nanophase Cell equation d = 2 d = 3 d = 4 d = 5 Radial coordinate

1 L (S1) x2 < R2 y y, z y, z, t y, z, t, v r = |x|
2 C (S2) x2 + y2 < R2 * z z, t z, t, v r =

√
x2 + y2

3 S3 x2 + y2 + z2 < R2 imp * t t, v r =
√

x2 + y2 + z2

4 S4 x2 + y2 + z2 + t2 < R2 imp imp * v r =
√

x2 + y2 + z2 + t2

5 S5 x2 + y2 + z2 + t2 + v2 < R2 imp imp imp * r =
√

x2 + y2 + z2 + t2 + v2

Before we consider the d = 4 case, it may be useful to
confront the d = 2 and d = 3 cases. For d = 2 the S1

and S2 nanophases are observed, and the non-classical
phases cannot be formed, probably due to topological
constraints, in this dimension. For d = 3, as already men-
tioned, the S1, S2, S3 and non-classical nanophases are
observed. The Wigner�Seitz cells for non-classical phases
are not easily approximated by SD's. The intricate spa-
cial structures of non-classical nanophases is formed as a
result of delicate competition between stretching energy
(which is of entropic origin) with the interfacial energy (of
enthalpic origin). The sequence of classical phase upon
varying f from 1/2 to 1 follows the order of increasing
dimensionalities, D, which means that as f increased the
SD-phases with higher D's are observed.

Therefore, it might be interesting and relevant to inves-
tigate the higher-d phase behavior of copolymer melts. In
this study, we do not limit d to 1, 2, and 3, but consider
formally an arbitrary d, and d = 4 in particular. Thus,
in addition to S1, S2, and S3 nanophases, we consider
the S4 nanophase, and its thermodynamic stability.

It is interesting that a MF theory applied to copoly-
mer melts [9, 17, 18], known as the self-consistent �eld
theory (SCFT), is successful in predicting diblock phase
diagrams resembling the experimental ones, as shown,
for example, in Ref. [19]. The SCFT approach is based
on the assumption that coarse-grained polymer chains in
dense melts are Gaussian (already mentioned as Flory's
theorem [1]), and on the MF approximation which se-
lects the dominant contribution in the appropriate par-
tition function, thus neglecting �uctuations. The SCFT
can be applied to a variety of diblock copolymer phe-
nomena, for example Cheng et al. [20] have studied the
nucleation of ordered phases and the minimum energy
paths. Moreover, the diblock copolymers in selective
solvent [21, 22] and diblock semi�exible copolymers [23]

have also been studied recently via SCFT. Another im-
portant SCFT work focuses on diblock copolymers with
amphiphilic segments [24] and the cooperative assembly
of mixtures of two types of diblocks [25].

It may be worth to reiterate that, despite a consider-
able success of the SCFT, the �uctuations can also play a
signi�cant role in determining the phase diagram of DBC
melt for d = 3. For example, Fredrickson and Helfand
[26] showed that Leibler's phase diagram [6] (based on 4th
order MF free energy expansion into small composition
variations in the Fourier space) can be considerably mod-
i�ed by the one-loop approximation of Brazovskii [27].
Similarly Fredrickson and co-workers show, in �eld sim-
ulations [12], that inclusion of �uctuations signi�cantly
improves the overall agreement of theory with experi-
ment. In particular, those simulations [12] show a direct
transition from disordered phase to C and G nanophases
like in experiment [19] and particle Monte Carlo simula-
tion [28, 29], but unlike the SCFT phase diagram [9].

Because, in the MF theories, it is su�cient to know the
composition, f , and the product χN in order to foresee
the nanophase [6, 18, 30], the diblock phase diagram can
be mapped in (χN , f)-plane. The MF theories exist in
many variations, both in real space (r-space) [7, 8, 10]
and the Fourier space (k-space) [2, 9]. While k-versions
of the SCFT are more successful in predicting DBC phase
diagram (in particular, the stability of the non-classical
G phase [9, 18]) we limit the scope of this work to an
r-version, based on the UCA method. In this approach,
the Wigner�Seitz cell of a periodic nanophase is approx-
imated by a SD-sphere. E�ectively, a single radial vari-
able, r, is used, as shown in Table I. Let us note that d
is the dimension of the space, and D is the dimension-
ality of the spherical cell. Since a nanophase can have
unconstrained spatial variables (for example, variable z
for cylinders in d = 3), as indicated in Table I, D can
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be smaller than d. As seen from this table, the non-
-classical phases are not considered in this method. The
UCA method does not determine the spatial arrange-
ment of the SD spheres. For example, we do not know,
from this theory, that the S2-spheres (of the C phase) are
hexagonally packed. Similarly, we do not know the spa-
tial arrangement of the S4-spheres. In order to �nd the
equilibrium phase, di�erent D's and radii, R, of spheri-
cal cell, are probed in the (χN , f)-parameter space. For
very large χN 's, the r-version of UCA tends to fail (for
χN > 130), and therefore it is signi�cant that Matsen de-
veloped a modi�ed UCA method [11] using the Fourier�
Bessel decomposition of radial functions. This improved
method works, at least for χN 's up to 1400, but since we
limit the scope to χN ≤ 130, it is su�cient to use the
standard r-version of the SCFT for the main goal of this
work. It is worthwhile to notice that in a recent study
Matsen [31], using the spectral method with Anderson
mixing, was able to perform the SCFT calculations up
to χN = 512000.

In addition, we intend to compare the phase bound-
aries calculated by the SCFT (and extrapolated to the
strong segregation limit, SSL) with the strong segrega-
tion theory (SST) for diblock melts, developed by Se-
menov [32], in which the free energy of the nanophase
has three contributions, the interfacial tension and the
stretching energies of the A and B blocks. These energies
can be approximated by simple expressions, allowing the
calculation of the OOT compositions in the SSL. Matsen
and Whitmore [10] compared the extrapolations of the
SCFT in the strong segregation limit with the SST re-
sults, obtaining a reasonable agreement, but with some
discrepancy for the OOT compositions. The SST was
modi�ed by Likhtman and Semenov to include appropri-
ate corrections [33]. In the zeroth order, the modi�ed
SST is equivalent to the original SST, but the leading
correction suggests that the SCFT extrapolation should
employ a di�erent form of χN dependence in extrapo-
lations, that is (χN)−1/3 rather than (χN)−1 used in
Ref. [10]. However, the higher order corrections to the
SST may also be important, and this may require another
extrapolation dependence for χN in the SSL. Recently,
Matsen [31] showed that (χN)−1/3 scaling can, indeed,
be observed for very high values of χN = 512000 which
are beyond the scope (and capability) of this study. To
summarize, we use the zeroth order of the SSL, and the
(χN)−1 scaling, for the following reasons:

• it is the simplest approach, and the exact scaling is
not known,

• the �rst order correction, leading to the (χN)−1/3

scaling, is observed for much higher values of χN
than those used in this study,

• the agreement between the extrapolated SCTF and
the SST is not crucial for the main result of this
paper,

• the asymptotic agreement of SST and SCFT is very
important for consistency reasons, but from the
practical point of view, the high values of χN 's,
used in testing this consistency, seem to be beyond
the physical reach.

The main goal of this paper is to construct a phase
diagram of a copolymer melt in 4d applying the SCFT
method with the UCA in r-space, as presented in [7�9].
Speci�cally, we intend to determine the area in (χN , f)-
-space, in which the S4 phase is stable, by varying both
the radius, R, of the unit cell and the dimensionality, D.
In this work, the following questions are posed:

1. is the S4 nanophase stable?

2. what is the sequence of nanophases, upon chang-
ing f?

3. are the binodals (ODT lines) shifted as we vary d
from 2 to 3, and from 3 to 4?

4. what are the strong segregation limits of the OOT
lines, and are those limits close to the predictions
of the strong segregation theory?

Beyond the scope of this study is the question concern-
ing the stability of non-classical phases for higher d's.
However if, indeed, the formation of the non-classical
phases is enhanced by �uctuations (which are smaller for
higher d's), then the MF results may be more relevant
and accurate as we increase d to 4 and higher.

2. Method

The incompressible copolymer melt is modeled as a col-
lection of n diblock chains con�ned in volume V . Each
chain, labeled α = 1, 2, . . . , n, can take any Gaussian con-
�guration (in accordance with the Flory's theorem [1])
parameterized from s = 0 to s = f for A-segments, and
from s = f to s = 1 for B-segments. Up to a multiplica-
tive constant, the partition function for a single Gaussian
chain in external �elds WA(r) and WB(r) acting on seg-
ments A and B, respectively, is

Q[WA,WB ] ≡
∫

D̃rα(· ) exp
(
−
∫ f

0

dsWA(rα(s))

−
∫ 1

f

dsWB(rα(s))

)
. (2)

The path integral,
∫
D̃rα(· ), is taken over single-chain

trajectories, rα(s), with the Wiener measure expressed

as D̃rα = DrαP [rα; 0, 1], and

P [rα; s1, s2] ∝ exp

(
− 3

2Na2

∫ s2

s1

ds

∣∣∣∣ ddsrα(s)
∣∣∣∣2
)
. (3)

Let us note that a is the segment size, and Na2 is the
mean squared end-to-end distance of a Gaussian chain.
By the Kac�Feynman theorem, Eq. (2) can be related to
a Fokker�Planck partial di�erential equation [2], known
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also as modi�ed di�usion equation (MDE) and shown
with appropriate details below (Eqs. (16) and (17)).

Segments A and B interact via the χ parameter which
provides an e�ective measure of incompatibility between
them [1]. Evaluation of the full partition function of n
interacting diblock chains, shown below (Eq. (4)), is a
highly challenging task, involving many-body interac-
tions, both intermolecular and intramolecular,

Z =

∫ n∏
α=1

D̃rαδ
(
1− ϕ̂A − ϕ̂B

)
exp
(
−χρ0ϕ̂Aϕ̂B

)
,

(4)

where δ-function enforces incompressibility (the melt is
assumed to be incompressible), and

ϕ̂A(r) =
N

ρ0

n∑
α=1

∫ f

0

dsδ(r − rα(s)), (5)

ϕ̂B(r) =
N

ρ0

n∑
α=1

∫ 1

f

dsδ(r − rα(s)) (6)

are the microscopic segments densities of A and B, re-
spectively; ρ0 = nN/V is the segment number density.
After replacing microscopic segment (or particle) densi-
ties with a variety of �elds [2, 7�9], by inserting and spec-
trally decomposing the appropriate δ-functionals, the
partition function of an incompressible diblock melt is

Z = N
∫

DϕA(· )DWA(· )DϕB(· )DWB(· )DΨ(· )

× exp

(
−F [ϕA,WA, ϕB ,WB ,Ψ ]

kBT

)
, (7)

where N is a normalization factor. The func-
tional integral is taken over the relevant �elds
ϕA(r), WA(r), ϕB(r), WB(r), and Ψ(r), with the free
energy functional, F [ϕA, WA, ϕB , WB , Ψ ], includ-
ing the single chain partition function (in external �elds
WA(r) and WB(r)), as shown below

F [ϕA,WA, ϕB,WB ,Ψ ]

nkBT
≡ − ln

Q
V

+V −1

∫
dr
[
NχϕA(r)ϕB(r)−WA(r)ϕA(r)

−WB(r)ϕB(r)−Ψ(r)(1− ϕA(r)− ϕB(r))
]
. (8)

Fields ϕA(r) and ϕB(r) are associated with normalized
concentration pro�les of A and B, and �elds WA(r) and
WB(r) with chemical potential �elds acting on A and B,
respectively; �eld Ψ(r) enforces incompressibility. Eval-
uating functional integrals in Eq. (7) is a challenging task
which, in principle, can be performed by �eld theoretic
simulations as proposed and implemented by Fredrickson
and co-workers [2, 12]. A simpler, but approximate, ap-
proach is based on the mean-�eld idea, where the dom-
inant, and in fact only, contribution to the functional
integral in Eq. (7) comes from the �elds satisfying the
saddle point condition expressed as the following set of
equations:

δF

δϕA
=

δF

δϕB
=

δF

δWA
=

δF

δWB
=

δF

δΨ
= 0. (9)

Performing the above functional derivatives yields

WA(r) = NχϕB(r) +Ψ(r), (10)

WB(r) = NχϕA(r) +Ψ(r), (11)

1 = ϕA(r) + ϕB(r), (12)

ϕA(r) =
V

Q

∫ f

0

dsq(r, s)q†(r, s), (13)

ϕB(r) =
V

Q

∫ 1

f

dsq(r, s)q†(r, s), (14)

where Q/V can be calculated as

Q
V

=
1

V

∫
drq(r, 1) (15)

and q(r, s) is the forward chain propagator which is the
solution of the following modi�ed di�usion equation:

∂q

∂s
=

1

6
Na2∇2q −WA(r)q, 0 ≤ s ≤ f,

∂q

∂s
=

1

6
Na2∇2q −WB(r)q, f ≤ s ≤ 1 (16)

with the initial condition q(r, 0) = 1. Similarly q†(r, s)
is the backward chain propagator which is the solution
of the conjugate modi�ed di�usion equation

−∂q†

∂s
=

1

6
Na2∇2q† −WA(r)q

†, 0 ≤ s ≤ f,

−∂q†

∂s
=

1

6
Na2∇2q† −WB(r)q

†, f ≤ s ≤ 1 (17)

with the initial condition q†(r, 1) = 1.

While the set of Eqs. (10)�(14) can be solved, in prin-
ciple, in a self-consistent manner, it is di�cult to solve
it without some additional assumptions. First, we as-
sume that the melt forms a spatially ordered nanophase.
Second, we use the UCA which is a considerable simpli-
�cation, limiting our attention to a single D-dimensional
spherical cell of radius R, and volume V . All �elds,
within this cell, have radial symmetry, which reduces
this problem computationally to a single radial coordi-
nate, r. The unconstrained spatial variables, speci�ed in
Table I for each d, become computationally irrelevant.
Thus Eq. (15) can be rewritten as

Q
V

= D

∫ R

0
rD−1q(r, 1)dr

RD
. (18)

Let us note that the factor, D, in front of the above inte-
gral originates from the ratio of the area of a sphere with
radius 1 to the volume of a spherical cell with the same
radius, both in D dimensions.

While in integrals (Eqs. (13)�(15)) we replace r with r,
and dr/V with DrD−1dr/RD, in the modi�ed di�usion
Eqs. (16) and (17), we replace r with r and use the spher-
ically symmetric form of the Laplacian
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∇2f =
∂2f

∂r2
+

D − 1

r

∂f

∂r
(19)

and similarly, in equations for both propagators q(r, s)
and q†(r, s), we replace r with r. Obviously the solution
depends on radius, R, and dimensionality, D = 1, 2, 3
and 4, corresponding to 4 di�erent nanophases, shown
in Table I. We use the Crank�Nicholson scheme (Ap-
pendix A) to solve iteratively the modi�ed di�usion equa-
tions (Eqs. (16) and (17)) in their radial form, until the
self-consistency condition is met, obtaining the saddle
point �elds, ϕA(r), ϕB(r), WA(r) and WB(r) for a given
R and D. In the MF approximation, the free energy
functional becomes the free energy, and therefore we cal-
culate the reduced free energy (per chain in kBT units)
by substituting the saddle point �elds into Eq. (8):

F (R,D)

nkBT
≡ − ln

Q
V

+
D

RD

∫ R

0

rD−1
[
NχϕA(r)ϕB(r)

−WA(r)ϕA(r)−WB(r)ϕB(r)
]
dr. (20)

3. Results and discussion

Since in the MF theory, the stability of a nanophase
depends on the product χN and composition, f , we start,
at a given point of the phase diagram (χN , f), with
numerical calculation of F (R,D) (Eq. (20)) for numerous
D's (1, 2, 3, and 4) and R's. In order to solve the MDE's
(Eqs. (16) and (17)) we use up to NT = 160 and up to
NR = 800 steps for the �time�, s, and space, r, variables,
respectively. Usually we need about 101 iterations (at
selected points up to 103) to meet the self-consistency
criteria with relative accuracy up to 10−6. However, for
selected points in the (χN, f)-plane, we increase both the
number of steps and the desired accuracy of convergence.
Numerically, we �nd R and D which minimize

F (R,D), and this allows us to determine the dimen-
sionality, D, of the most stable nanophase, and there-
fore the most favorable nanophase itself, using the cor-
respondence from Table I. But the free energy of this
nanophase has to be compared to that of the disordered
phase. Therefore, we calculate the di�erence

∆F

nkBT
≡ F

nkBT
− Fdis

nkBT
, (21)

where Fdis is the free energy of the disordered phase

Fdis

nkBT
= Nχf(1− f). (22)

If ∆F is negative, then the appropriate nanophase
is thermodynamically stable for the point considered,
(χN , f); otherwise the system is the disordered phase.
This procedure allows us to map the DBC melt phase

diagram for 4d in (χN, f)-plane, as shown in Fig. 1.
Since there is a mirror symmetry with respect to f = 0.5
(f → 1 − f , A can be exchanged with B), we show the
resultant nanophases only from f = 0.5 to 1, and the
following phase sequence is observed: L, C, S3, S4, and
the disordered phase. Solid lines between nanophases in-
dicate the OOT lines, and a solid line between S4 phase

Fig. 1. DBC phase diagram in 4d: L, C, S3, and S4 in-
dicates corresponding nanophases; the disordered phase
is also shown.

and disordered phase is the ODT (binodal) line; the cor-
responding data for those lines is presented in Table II
(note that due to the mirror symmetry, f 's are taken
from 0 to 0.5). A new nanophase, S4, is observed in a
relatively narrow strip between the S3 phase and disor-
dered phase, which is the main di�erence between the 4d
and 3d DBC phase diagrams. We extrapolate the cal-
culated OOT lines, fL/C , fC/S3

, fS3/S4
, to the strong

segregation limit, that is we estimate them as χN → ∞
(or 1/(χN) → 0), �tting to the following function:

f(χN) = f0 +
g0

χN
(23)

as used in Ref. [10], and to

f(χN) = f1 +
g1

(χN)1/3
(24)

as used in Ref. [33]. Unfortunately, we cannot �nd
the limits, f1, for fC/S3

and fS3/S4
with the function

from Eq. (24), because they depend signi�cantly on the
points selected for �tting. By contrast, the function from
Eq. (23) gives consistent limits, f0 (up to, at least, 2 sig-
ni�cant �gures), which do not depend strongly on the se-
lection of points for χN ≥ 70. The resultant limits, f0

L/C ,

f0
C/S3

, f0
S3/S4

are compared to the SST f 's, as shown in

Table III. The relevant results of the SST calculations
for an arbitrary D are shown in Appendix B. The dis-
crepancy between the SST and the present SCFT with
the UCA, for fL/C and fC/S3

is within 2% error, as also
reported in [10]. However, this discrepancy for fS3/S4

is
about 10%. It seems that in order to increase the accu-
racy of the extrapolations, one should perform the SCFT
calculations for higher χN 's, but this may require a 4d
extension of the method developed by Matsen [11, 16]
and the SST with corrections. We also compare fL/C

and fC/S3
with the full SCFT (as presented in Ref. [10]),

that is without using the UCA, and the overall agreement
is again within 2% error.

While spinodals for the ODT calculated with random-
-phase approximation (RPA) [6] are the same for d = 2, 3,
and 4, the binodals (the ODT lines), calculated in this
work, depend on d as shown in Fig. 2. The binodals
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TABLE II

The ODT and OOT lines for selected χN 's.

χN fL/C fC/S3
fS3/S4

fODT

20 0.36797 0.25210 0.22436 0.20661

30 0.34531 0.20048 0.16643 0.14529

40 0.33601 0.17474 0.13631 0.11424

50 0.33120 0.15988 0.11714 0.09484

60 0.32828 0.15059 0.10379 0.08166

70 0.32629 0.14452 0.09387 0.07188

80 0.32482 0.14057 0.08698 0.06455

90 0.32392 0.13737 0.08029 0.05854

100 0.32303 0.13510 0.07535 0.05376

110 0.32242 0.13334 0.07125 0.04977

120 0.32152 0.13190 0.06780 0.04638

130 0.32090 0.13070 0.06486 0.04344

TABLE III

The OOT lines from the full SCFT [10] and UCA
extrapolated to in�nite χN 's compared to the
SST results.

Method fL/C fC/S3
fS3/S4

full SCFT [10] 0.3100 0.1050 �

UCA 0.3150 0.1149 0.0306

SST 0.2845 0.1172 0.0336

depend weakly on d, and they are particularly close to
each other in the vicinity of fA = 1/2 (symmetric di-
block), and therefore we show them in a narrow window
(from 0.9 to 0.95 in f , that is away from f = 1/2) in the
inset of Fig. 2. We observe the following sequence of bin-
odals: the upper line corresponds to the 2d binodal, the
medium one to the 3d, and the lower to the 4d binodal.
For f = 1/2 the RPA spinodal is at (χN)c ≈ 10.4949, and
the calculated binodals (for d = 2, 3, and 4) also converge
to this point within the numerical accuracy. Similarly,
the OOT lines seem to converge to (χN)c for f = 0.5.

Fig. 2. Binodals are indicated by solid lines: upper �
2d, middle � 3d, and lower � 4d; the RPA spinodal
by the dotted line. nset shows the phase diagram from
f = 0.90 to 0.95.

Finally, we consider the potential relevance of the 4d

results. While the sequence of phases (layers, cylinders,
3D spherical cells, and 4D spherical cells) is not unex-
pected, the (χN)-dependent width of the stability win-
dow for the S4 case cannot be easily estimated without
performing the SCFT calculations. It is reassuring to
�nd that the SST of zeroth order recovers the SCFT lim-
its for d = 4 as it does for d = 2 and 3. Also the weak
d-dependence of the binodals is of potential interest. It is
still premature to justify the practical advantages of this
study, but it sheds some light on the underlying theory
of block copolymer melts.

4. Conclusions
Using a self-consistent �eld theory in spherical unit

cells of various dimensionalities, D = 1, 2, 3, and 4, we
calculate phase diagram of a diblock, A-b-B, copolymer
melt in 4 dimensional space, d = 4. The phase diagram is
parameterized by the chain composition, f , and incom-
patibility between A and B, quanti�ed by the product
χN . We predict 4 stable nanophases: layers, cylinders,
3D spherical cells, and 4D spherical cells, and calculate
both order�disorder and order�order transition lines. In
the strong segregation limit, that is for large χN , the
OOT compositions, fL/C , fC/S3

, and fS3/S4
are deter-

mined by the strong segregation theory. Those transi-
tions are close to the corresponding extrapolations from
the self-consistent �eld theory, as shown in Table III. We
�nd that the S4 nanophase is stable in a narrow strip
between ordered S3 nanophase and the disordered phase.
The calculated binodals (ODT lines) depend weakly on d.
Finally, the SST of zeroth order works reasonably well as
the limiting case of the SCFT for di�erent dimensional-
ities, including D = 4, but the �tting procedure is open
to debate, since the role of higher order corrections in the
SST seems to be unexplained.
In summary we �nd answers to some questions that we

pose in Introduction:

1. the nanophase S4 is stable within a relatively nar-
row strip between the S3 nanophase and the disor-
dered phase,

2. the sequence of nanophases appropriate for the
UCA in 3d is preserved, starting from f = 1/2,
L, C, S3, and there is an additional S4 nanophase
in 4d,

3. the ODT binodals depend weakly on d, and they
are shifted as d is varied,

4. the SST compositions, fL/C , fC/S3
, and fS3/S4

are
close to the corresponding extrapolations from the
self-consistent �eld theory, as shown in Table III,
but the �tting procedure is open to debate.

Finally, the questions concerning the �uctuation-
-enhanced formation of the non-classical nanophases, for
higher d's, remains open. To address this question an in-
clusion of �uctuations is required via, for example, �eld
theoretic simulations [2] and also allowing non-spherical
symmetries of the nanophase, but this is beyond the
scope of this study.
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Appendix A
The Crank�Nicholson method of solving the modi�ed

di�usion equation (MDE) is brie�y sketched below. Nu-
merically, we discretize q(r, s):

qni = q(i∆r, n∆s), wi = WA(i∆r), (25)

where i = 1, 2, . . . , NR, and n = 1, 2, . . . , NT . Using nu-
merical form of derivatives we can write the MDE (this is
for the forward propagator from 0 to f , but other prop-
agators can be written similarly) as

qn+1
i − qni

∆s
=

1

2

Na2

6

qni+1 + qni−1 − 2qni
(∆r)2

+
1

2

(
Na2

6

D − 1

i∆r

qni+1 − qni−1

2∆r
− wiq

n
i

)

+
1

2

Na2

6

qn+1
i+1 + qn+1

i−1 − 2qn+1
i

(∆r)2

+
1

2

(
Na2

6

D − 1

i∆r

qn+1
i+1 − qn+1

i−1

2∆r
− wiq

n+1
i

)
,

which can be rewritten in a trigonal matrix form
b1 a1 0 0 . . . 0

c2 b2 a2 0 . . . 0

. . . . . .

0 0 0 . . . cNR bNR



qn+1
1

qn+1
2

. . .

qn+1
NR

 =


d1

d2

. . .

dNR

,
(26)

where

ai =
1

2
A

(
1 +

D − 1

2i

)
, ci =

1

2
A

(
1− D − 1

2i

)
,

bi = −1−A+
1

2
wi∆s, (27)

di = −1

2

[
A(qni+1 + qni−1 − 2qni )

+A
D − 1

2i
(qni+1 − qni−1) + wiq

n
i ∆s

]
− qni , (28)

A =
Na2∆s

6(∆r)2
. (29)

Equation (26) can be e�ectively solved (for qn+1) by
upper-lower decomposition of the trigonal matrix [2, 34].

Appendix B

The SST for diblock melts was developed by Se-
menov [32], and later modi�ed by Likhtman and Semenov
[33] to include corrections, but we use it without cor-
rections (zeroth order), as presented by Matsen in Refs.
[17, 35], with the following expression for the free energy
per chain:

FSST

kTn
= αA R2

Na2
+ αB R2

Na2
+ β(χN)

1
2

(
R

aN
1
2

)−1

,

(30)

where the �rst term is the stretching energy of the A-
-block, the second term is the stretching energy of the
B-block, the third term is the interfacial energy in strong
segregation. The A-segments are distributed in the
spherical core of radius RI = f1/DR, the interface is
sharply localized at r = RI , and the B-segments can be
found in the spherical layer from r = RI to R. We cal-
culate the coe�cients, αA, αB, and β, for an arbitrary
dimensionality, D, by a straightforward generalization of
the approach presented in [35]:

αA =
3π2f (2−D)/D

4(D2 + 3D + 2)
, (31)

αB =
3π2
[
D2
(
f1/D − 1

)2 − 2(f − 1)f2/D +D
(
3f2/D − 4f1/D + 1

)]
8(D2 + 3D + 2)(f − 1)2

, (32)

β = [Df (D−1)/D]/
√
6. (33)

Those coe�cients reduce to expressions presented in
Ref. [35] for L, C, and S3, corresponding to D = 1, 2,
and 3, respectively. By minimizing Eq. (30) with respect
to R we obtain the equilibrium R which depends both on
f and D:

R = a
{
β/[2(αA + αB)]

}1/3
χ1/6N2/3 (34)

and the minimum free energy is

FSST

kTn
=

3

2

[
2
(
αA + αB

)
β2χN

]1/3
. (35)

The phase boundaries can be calculated as

fL/C = (8 + 4
√
2)/48 ≈ 0.284517, (36)

fC/S3
≈ 0.117192, (37)

fS3/S4
≈ 0.0335796, (38)

and additionally (detailed calculations for d = 5 we
present in Ref. [36])

fS4/S5
≈ 0.000183905. (39)

The numerical values in Eqs. (38) and (39), and coe�-
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cients αA, αB , and β for an arbitrary D (Eqs. (31)�(33)),
are reported, to our knowledge, for the �rst time. It is
worth to notice that the phase boundaries, fL/C , fC/S3

,
and fS3/S4

, do not depend on numerical prefactors such

as 3π/8 (in Eqs. (31) and (32)) and 1/
√
6 (in Eq. (33)).
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