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Laser rate equations are written and solved in the frequency domain for homogeneous as well as for
inhomogeneous gain. The resulting laser model is capable of describing the �ne structure as well as the dynamics
of the laser frequency spectrum. The calculation shows that laser lines have a Lorentzian-like lineshape. The
linewidth is found to be close to the spectral width of the cavity in case of inhomogeneous gain, whereas it is
proved to approach the quantum limit for homogeneous gain.
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1. Introduction

Laser linewidth plays a key role in manifold applica-
tions utilizing laser spectroscopic techniques. The �rst
treatment of laser linewidth was conducted by Schawlow
and Townes in the late 1950s. They studied the situa-
tion of a single-mode laser with homogeneously broad-
ened gain pro�le, and found that the emitted laser light
should have an extremely small linewidth of the order of
a few Hz which is limited only by means of quantum noise
due to spontaneous emission [1]. The quantum theory of
laser, developed later on during the early 1960s, improved
that picture to include an additional contribution from
the so-called technical noise related mainly to �uctua-
tions in the pump power as well as in the e�ective length
of the resonator [2]. Technical noise has been found to
yield considerably larger linewidths ranging from a few
kHz up to several tens of MHz. During the late 1960s
and early 1970s, great theoretical as well as experimen-
tal e�orts have been vested into the investigation of laser
linewidth due to quantum noise. The Schawlow�Townes
quantum limit has been veri�ed to apply precisely in the
above threshold region, and within a factor of two when
the laser is operated below threshold [3�5]. Since then, it
has been taken as a matter of facts that laser linewidth
generally approaches the quantum limit, but mostly fails
to reach it because of the contribution of technical noise.
Indeed, the picture of in�nitely small linewidth has

been adopted in the manifold of laser models developed
during the past decades, both semiclassical [6, 7] as well
as quantum statistical ones [8, 9]. However, in all those
models, the vanishing linewidth was not a physical result
of the homogeneous gain as in the theoretical study of
Schawlow and Townes, but rather an arti�cial result of
requiring the solutions for the �eld to be self-consistent.
Let us note that the latter requirement itself is less con-
vincing since it fails to explain the frequency spectrum
of the pure cavity.
Therefore, and notwithstanding the great signi�cance

of the existing laser models regarding the investigation
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of multitude applications, we believe that there is still
a need for a laser model which re-establishes the miss-
ing connection between the mechanism responsible for
�ne-structuring the laser frequency spectrum and the el-
ementary process of stimulated emission. On the other
hand, stimulated emission is directly coupled to the dy-
namics of population inversion, and the latter is known
to show completely di�erent behaviour for homogeneous
and inhomogeneous gain pro�le [10, 11]. For this rea-
son, it is desirable to start with studying the two situa-
tions, homogeneous and inhomogeneous gain, separately
before proceeding to consider the general situation of a
gain pro�le with both homogeneous and inhomogeneous
contributions. The present work is devoted to exposing
these problems on the basis of an extended rate equations
model.
Laser models based on Einstein's rate equations have

proved to be quite powerful in describing the dynamics of
the interplay between pumping, laser power, and popu-
lation inversion [12�16]. In their conventional form, laser
rate equations are written and solved in the pure time
domain, and include no information about the detailed
structure of the frequency spectrum. In order to make
the rate equations capable of describing the dynamics of
the laser frequency spectrum, two steps should be done.
Firstly, the rate equations should be extended into the
frequency domain; and secondly, the spectral e�ect of
the cavity should be adequately incorporated into the
extended rate equations.
The deduction and discussion of the extended rate

equations for homogeneous, as well as for inhomogeneous
gain, constitute the main subject of the present study.
We will rely on gas lasers in order to compare our calcu-
lation results with the experimental data available from
our He�Ne laser. However, the basic arguments of ex-
tending the laser rate equations into the frequency do-
main should apply equally for other kinds of lasers.

2. The model

A laser consists, in general, of three fundamental com-
ponents: an active medium providing the spontaneous
emission (source) as well as the stimulated emission (am-
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pli�cation), a pumping mechanism supporting the popu-
lation of the laser upper state, and an optical resonator
providing the feedback to the active medium. Within
the framework of a three-level formalism which is quite
su�cient for the purpose of the present study, the ac-
tive medium is characterized by the population densities
M1 and M2 of the laser lower, respectively upper state,
the decay constants A10 and A20 describing the nonra-
diative decay of the lower, respectively upper state into
the ground state, the Einstein coe�cient A21 accounting
for the spontaneous decay of the upper into the lower
state, and the cross-section σ for the stimulated transi-
tion 1 → 2 (absorption), as well as 2 → 1 (stimulated
emission). The pumping mechanism, second component
of the laser, is simply described by the pumping rate Φ.
The resonator, third component of the laser, is speci-
�ed as a Fabry�Perot cavity characterized by its optical
length L and the mirror re�ectivities R1 and R2.
In constructing our rate equations, we will follow the

outlines of the common concept used by Burak et al. for
small gain lasers [17], as well as by Rigrod [18] and Kauf-
man and Oppenheim [19] for high gain lasers. However,
our treatment will distinguish itself from earlier works by
means of the following two additional features. (a) We
will write and solve the laser rate equations in both time
and frequency domains; and (b) we will introduce the
spectral e�ect of the cavity into the laser rate equations
instead of adopting prede�ned cavity modes. These two
add-ons will give our extended model the capability of
providing an independent calculation of the time evolu-
tion of the laser frequency spectrum in contrast to con-
ventional rate equations models which are restricted to
the dynamics of a few prede�ned modes. In the follow-
ing, we will distinguish between two idealized situations
speci�ed by a completely inhomogeneous, respectively a
completely homogeneous gain.

2.1. Inhomogeneous gain

In this idealized situation, the frequency spectrum
of the source photons (spontaneous emission) is as-
sumed to be inhomogeneously broadened by means of the
Doppler broadening. Under this assumption, the atoms/
molecules of the active medium can be divided into dis-
tinct velocity groups associated with di�erent frequency
bins. This gives us the opportunity to write and solve the
rate equations for each frequency bin separately. There-
fore, our rate equations will involve the di�erential quan-
tities M ′

1(ν), M
′
2(ν), Φ

′(ν), and β′(ν) which describe the
population densities, the pumping rate, and the rate of
stimulated emission for the group of atoms/molecules as-
sociated with the frequency ν.
The set of rate equations consists of two equations for

the rate of change of the population density of the lower,
respectively the upper laser state, as well as a third equa-
tion describing the rate of change of the beam intensity
inside the cavity. Making use of the di�erential quanti-
ties de�ned above, the rate equations at frequency ν can
be written as follows:

d

dt
M ′

1(ν) = β′(ν) +A21M
′
2(ν)−A10M

′
1(ν), (1)

d

dt
M ′

2(ν) = −β′(ν)− (A21 +A20)M
′
2(ν) + Φ′(ν), (2)

d

dt
I(ν) =

1

τ

[
R1R2G

2(ν)− 1
]
I(ν), (3)

where τ = 2L/c is the round-trip time and G(ν) is
the single-pass gain due to stimulated emission. Equa-
tions (1), (2) are self-explanatory. Equation (3) can be
obtained by considering the change of the beam intensity
during the round-trip time τ .

Equations (1)�(3) involve �ve unknown quantities and
hence, we still have to construct two additional indepen-
dent equations of the same quantities in order to achieve
a complete set of equations with unique solution. We will
do this in the following by scrutinizing closely the single
pass ampli�cation G(ν) as well as the rate of stimulated
emission β′(ν).

When the beam passes an in�nitesimal length dl inside
the active medium, the beam intensity increases by

dI(ν) = σinh(ν)[M
′
2(ν)−M ′

1(ν)]I(ν)dl,

where σinh(ν) refers to the e�ective inhomogeneous tran-
sition cross-section. The integration over the full path l
throughout the active medium gives the following rela-
tionship between outgoing and incoming intensities:

Iout(ν) = Iin(ν) exp(σinh(ν)([M
′
2(ν)−M ′

1(ν)]l).

Let us note that the latter integration is based on the
assumption that changes in M ′

1 and M ′
2 over the time

interval l/c are relatively small (rate equations approx-
imation). The latter relationship provides an intuitive
and quite powerful description of the ampli�cation due
to stimulated emission (M ′

2 > M ′
1) as the physical coun-

terpart of the attenuation due to absorption (M ′
1 > M ′

2).
Moreover, it allows for specifying the single pass ampli�-
cationG(ν), also referred to as single pass gain, according
to

G(ν) = exp(σinh(ν)[M
′
2(ν)−M ′

1(ν)]l). (4)

Herein, σinh(ν) distinguishes itself from the free transi-
tion cross-section σ by including the frequency selective
e�ect of the cavity. In fact, the quantum electrodynam-
ics tells us that the transition amplitude is proportional
to the amplitude of the electromagnetic wave associated
with the emitted photon and hence, the transition prob-
ability is proportional to the intensity [20]. However,
a photon with frequency ν propagating inside the cav-
ity will undergo single photon interference [21], and this
will lead to an intensity enhancement proportional to the
Airy function of the cavity. Therefore, the e�ective cross-
-section σinh(ν) can be written as

σinh(ν) = σ
1

1 +R1R2 − 2
√
R1R2 cos δ(ν)

,

where δ(ν) = 4πLν/c is the round-trip phase shift.

On the other hand, the beam entering the active
medium from the side of mirror 1 with an intensity
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I(ν) will exit the medium with the ampli�ed intensity
G(ν)I(ν), i.e. with an intensity change of [G(ν)− 1]I(ν).
After that, the beam will be re�ected on mirror 2
to re-enter the medium with the intensity R2G(ν)I(ν)
and leave it with the ampli�ed intensity R2G

2(ν)I(ν),
i.e. with an additional intensity change of [G(ν) −
1]R2G(ν)I(ν). And hence, the total intensity change due
to stimulated emission during a round-trip is given by

∆Ist(ν) = [G(ν)− 1][1 +R2G(ν)]I(ν),

and the rate of stimulated emission β′(ν) can be calcu-
lated as

β′(ν) =
1

hνl
[G(ν)− 1][1 +R2G(ν)]I(ν). (5)

With the aid of Eqs. (4), (5), the set of rate
Eqs. (1)�(3) can be solved for each frequency bin sepa-
rately. The obtained solution provides the time evolution
of the spectral intensity I(ν), as well as of the population
densities M ′

1(ν) and M ′
2(ν).

2.2. Homogeneous gain

Under the assumption of a homogeneous gain, the
atoms/molecules in the lower, respectively the upper
state are all equivalent regarding their interaction with
photons. Therefore, the population densities M1 and
M2 are no more frequency dependent. Consequently, the
pumping rate Φ and the rate of stimulated emission β,
which directly contribute to the rate of change of M1

and M2, are also not frequency dependent. Therefore,
the rate equations for M1 and M2 reduce to the simple
form

d

dt
M1 = β +A21M2 −A10M1, (6)

d

dt
M2 = −β − (A21 +A20)M2 + Φ. (7)

The rate equation for the intensity keeps the same form
given in Eq. (3) and will be written here just for the
purpose of completeness

d

dt
I(ν) =

1

τ

[
R1R2G

2(ν)− 1
]
I(ν). (8)

The equation for the single pass gain G(ν) can be
rewritten as

G(ν) = exp(σh(ν)(M2 −M1)l). (9)

Herein, σh(ν) refers to the e�ective homogeneous tran-
sition cross-section which can be represented as a
Lorentzian-shaped cross-section multiplied by the Airy
function of the cavity

σh(ν) = σ
1

2π

∆νhdν

(ν − ν0)
2
+ 1

4 (∆νh)
2

× 1

1 +R1R2 − 2
√
R1R2 cos δ(ν)

,

where ν0 is the central frequency and ∆νh the homoge-

neous width.
The rate of stimulated emission β can be calculated by

summing up Eq. (5) over all frequency bins

β =
∑
ν

1

hνl
[G(ν)− 1][1 +R2G(ν)]I(ν). (10)

Finally, the complete set of Eqs. (6)�(10) can be solved
by means of numerical integration. The solution provides
the time evolution of I(ν), M1 and M2.

3. Results and discussion

In the following, we will discuss the results produced
by the model under the conditions of inhomogeneous,
respectively homogeneous gain. An overview of the
adopted values for the various model parameters is given
in Table. The values of the laser parameters are adjusted
to reproduce the parameters of our He�Ne laser in order
to allow for comparison with experiment. The lifetimes
T1 and T2 are taken from [22]; the Einstein coe�cient
A21 and the laser transition cross-section σ are taken
from [23] and [24], respectively; whereas the value for
the pumping rate Φ is derived from the inversion density
of 1.5× 109 cm−3 reported in [22].

TABLE
The model parameters adopted for simulating our He-Ne
laser.

Parameter Value

cavity length L 77 cm

mirror re�ectivities R1 0.99

R2 0.98

length of the
discharge tube

l 60 cm

lifetime of the laser
upper level

T2 100 ns

lifetime of the laser
lower level

T1 10 ns

Einstein coe�cient
for the spontaneous
transition 2 → 1

A21 3.4× 106 s−1

cross-section
for stimulated
transition 1 ↔ 2

σ 3.0× 10−13 cm2

pumping rate Φ 1.5× 1016 cm−3 s−1

At the beginning of the calculation, the system is ini-
tialized to meet the conditions of pumping saturation in
the open resonator (equilibrium between pumping and
decay considering the stimulated emission to be turned
o� for the time being). Starting from this well de�ned
initial situation, we turn on stimulated emission, and con-
tinue tracing the time evolution of the spectral intensity
I(ν) as well as of the population densities M1 and M2

until saturation is completely established.

3.1. Inhomogeneous gain
We will rely on the speci�c situation of inhomogeneous

gain due to the Doppler broadening which is most rele-
vant for the purpose of simulating our He�Ne laser aiming
at a reliable comparison between calculation and exper-
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iment. Accordingly, we assume the pumping rate Φ′(ν),
the initial population densities M ′

1(ν) and M ′
2(ν), as well

as the initial intensity (spontaneously emitted photons)
to follow a Gaussian distribution. The Doppler width
is set to 1500 MHz which is typical for a He�Ne laser
oscillating at λ = 632.8 nm [10].
The comparison between calculation and experiment

proves, �rst of all, that our simple model is able to repro-
duce the experimentally measured frequency spectrum
with respect to the number of active modes and their in-
dividual positions and relative intensities as readily seen
in Fig. 1. However, the calculated overall output power
is found to underestimate the measured power of 6.4 mW
by a large factor of several hundreds. Note that the calcu-
lated spectrum has been scaled by a factor of 3.7×102 in
order to �t together with the measured spectrum within
the same graph in Fig. 1.

Fig. 1. Frequency spectrum of the He-Ne laser: Com-
parison between calculation and experiment. The solid
line represents the measured spectrum as recorded by
a scanning Fabry-Perot interferometer with a resolution
of 3.9 MHz. The �lled area represents the calculated
spectrum passed through the Fabry-Perot analyzer and
scaled by a factor of 3.7 × 102. The calculation is car-
ried out using the parameter set listed in Table and
assuming an inhomogeneous gain with a Doppler width
of 1500 MHz.

It is worth highlighting the physical content of these
seemingly contradictory results before proceeding to fur-
ther aspects of the comparison between calculation and
experiment. Actually, the reproduction of the number of
active modes and their positions and relative intensities
simply indicates that the model correctly reconstructs
the threshold condition for each individual frequency bin.
However, the strongly underestimated power exposes the
problem connected with our too hard assumption of com-
pletely inhomogeneous gain which is hardly applicable
for a real He-Ne laser. In fact, the assumption of a
completely inhomogeneous gain implies that the total
homogeneous width (natural width, pressure broaden-
ing, saturation broadening. . . ) is smaller than the cav-
ity width; and this is by far not ful�lled for real He-Ne

Fig. 2. Comparison between measured and calculated
dynamics of the laser power. The solid line shows the
experimentally measured rise curve of the power, the
dashed line represents the theoretical rise curve calcu-
lated with the parameter set of Table and assuming an
inhomogeneous gain with a Doppler width of 1500 MHz.
The dashed-dotted line represents a recalculation with
an e�ective transition cross section of twice the value
given in Table. The values of the laser power are given
in units of the corresponding saturation power.

lasers. Note that the natural width of the laser transition
at λ = 632.8 nm amounts to 19 MHz [10] which clearly
exceeds the typical cavity width of about 1 MHz. As con-
sequence of the completely inhomogeneous gain, photons
with a certain frequency ν are ampli�ed in the calculation
exclusively by the gain available in the corresponding fre-
quency bin whereas in a real He-Ne laser, ampli�cation is
massively enhanced by contributions from adjacent fre-
quencies within the homogeneous width. The right way
to resolve this power discrepancy is to incorporate the
e�ect of both homogeneous and inhomogeneous broad-
ening of the gain pro�le into the set of rate equations. In
fact, it is not possible to neutralize the power discrepancy
within the framework of our model in its present form.
The obvious attempt to enhance the power by tuning σ
or Φ to larger values would necessarily cause a shift in
the threshold balance leading to the activation of addi-
tional modes at the cost of the relative intensities of the
central ones. By way of illustration, assigning σ an arti-
�cial value of twice the value listed in Table increases the
power by factor 10, but produces at the same time four
additional modes causing the central mode to lose 35%
of its relative intensity.

Concerning the lineshape and linewidth of the indi-
vidual modes, the calculation produces a Lorentzian-like
lineshape and a linewidth close to the spectral width
of the pure cavity. The lineshape di�ers from an ordi-
nary Lorentzian by having a strongly suppressed tail. A
direct comparison with the lineshape and linewidth of
the experimentally measured frequency spectrum is un-
fortunately not relevant since the apparent linewidth of
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3.9 MHz seen in Fig. 1 for both the measured as well
as the calculated spectrum does mainly re�ect the spec-
tral resolution of the scanning Fabry�Perot interferome-
ter used in the measurement. Note that the calculated
spectrum has been passed through the Fabry�Perot in
order to enable for a reliable comparison between calcu-
lation and experiment. Likewise, it is also not reasonable
to compare our calculated linewidth with the experimen-
tal results of earlier works reporting very small linewidths
of the order of a few kHz [5,25] because our calculation
is based on assuming a completely inhomogeneous gain,
which is not reliable for real He-Ne lasers. In fact, we do
expect our calculated linewidth to decrease dramatically
when allowing for frequency competition due to homoge-
neous broadening as will be discussed below.
Proceeding to the next item of assessing the results of

the calculation in the light of the available experimental
data, the calculated time evolution of the power P (t) is
shown in Fig. 2 (dashed line) in direct comparison with
the rise curve of our He�Ne laser (solid gray line) mea-
sured by means of a fast photodiode and an oscilloscope
with a time resolution of 5× 10−11 s.

Fig. 3. Spectral distribution of the population inver-
sion calculated for inhomogeneous gain with a Doppler
width of 1500 MHz. The calculation is carried out using
the parameter set of Table. The �nal inversion (dotted
line) deviates from the initial inversion (solid line) only
at the positions of the �ve active modes. A closer view
of the population inversion at the position of the most
central mode is shown in the inset.

It is evident from Fig. 2 that the calculation qualita-
tively reproduces the saturation which is the most es-
sential feature of the rise curve. However, a satisfactory
reproduction of the rise time is not possible, unless σ is
arti�cially enhanced (dashed-dotted line) at cost of pro-
ducing additional active modes. And this illustrates that
the problem of neglecting the homogeneous width in the
calculation causes not only a decrease of the power but
also an increase of the power rise time.
Completing the discussion of inhomogeneous gain, a

quick glance at the calculated population inversion is
given in Fig. 3. It is obvious that the saturated pop-

Fig. 4. Dynamics of the laser linewidth for homoge-
neously broadened gain. The calculation is carried out
using the parameter set of Table assuming a homoge-
neous gain with a Lorentzian width of 30 MHz.

ulation inversion (dotted line) di�ers from the initial in-
version (solid gray line) only by means of a few narrow
dips at the positions of the active modes, which is quite
in line with the common picture for lasers with inho-
mogeneous gain [10, 11]. A closer look (inset in Fig. 3)
shows that the width of the individual inversion dips fol-
lows the spectral width of the pure cavity likewise with
the linewidth of the corresponding modes. However, this
result depends again on our assumption of completely
inhomogeneous gain, i.e. on turning o� the e�ect of fre-
quency competition. In fact, we expect, when allowing
for frequency competition within a reasonable homoge-
neous width larger than the cavity width, that the width
of the inversion dips would increase towards the homo-
geneous width whereas the linewidth of the individual
modes would decrease to smaller values far below the
cavity width.

3.2. Homogeneous gain

Now, having disputed the situation of completely inho-
mogeneous gain, it is worth making a side trip to the com-
plementary situation of completely homogeneous gain.
The laser parameters are kept at their values, whereas
the gain pro�le is switched to homogeneous broadening
with a moderate width of 30 MHz which is slightly above
the natural width of the laser transition. Although no
more directly comparable with our He�Ne laser, calcula-
tion under these new conditions is of great signi�cance
because of several reasons. Firstly, it can be considered
to simulate a single mode He�Ne laser which is achiev-
able by adjusting the pumping rate to a near-threshold
value, i.e. by suppressing the width of the above thresh-
old region to a value smaller than the mode spacing. Sec-
ondly, the homogeneous broadening can never be turned
o� in a real laser; moreover, it clearly exceeds the cavity
width in mostly all common lasers and therefore, it is ex-
pected to a�ect the lineshape and linewidth even in case
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of a multimode laser with predominantly inhomogeneous
gain. Finally, the homogeneous broadening determines
the range of frequency competition which is expected to
play a key role in constructing the �ne structure of the
laser frequency spectrum.
We have calculated the laser frequency spectrum under

the assumption of a homogeneous gain with a Lorentzian
width of 30 MHz. Regarding the overall power, satura-
tion is reached already after a few hundreds round-trips
(1 µs). The corresponding frequency spectrum is charac-
terized by a single mode coinciding with the strongest
available cavity mode, a Lorentzian lineshape, and a
linewidth close to the spectral width of the cavity. How-
ever, and notwithstanding the rapid saturation of the
overall power, the linewidth remains unsaturated after
105 round-trips (ca. 500 µs) and continues to decrease
with time approaching the calculation limit of a single fre-
quency bin (10 kHz) as illustrated in Fig. 4. This is quite
in line with the very small quantum limited width pre-
dicted by Schawlow and Townes [1]. Let us note that the
quantum limit of the linewidth is, in case of our He�Ne
laser, of the order of 10−3 Hz which is simply unreachable
within the framework of our numerical calculation.

4. Conclusions

We have demonstrated the possibility of extending the
rate equations model into the frequency domain aiming
at describing the dynamics of the laser frequency spec-
trum. Laser rate equations have been written in the fre-
quency domain under the condition of completely inho-
mogeneous, as well as completely homogeneous broaden-
ing of the gain pro�le. The spectral e�ect of the cavity
has been incorporated into the rate equations by consid-
ering the relationship between the probability for stim-
ulated transitions and the cavity-sensitive intensity en-
hancement due to single-photon interference. Our ex-
tended rate equations model proves to provide a reli-
able tool for investigating the dynamics of the laser fre-
quency spectrum, in contrast to conventional rate equa-
tions models which are restricted to describing the dy-
namics of the integrated photon densities in a few prede-
�ned modes.
The validity of the model has been veri�ed by means of

comparison between calculation and experiment. Adopt-
ing the parameters of our He-Ne laser and assuming an
inhomogeneous gain with a Doppler width of 1500 MHz,
the calculation proved to satisfactorily reproduce the ex-
perimentally measured frequency spectrum regarding the
number of active modes and their positions and relative
intensities. Furthermore, the model demonstrated rea-
sonable ability to reproduce the saturation dynamics of
both the laser power and the population inversion.
In addition, the model proved also to be capable of sim-

ulating the speci�c features of the laser frequency spec-
trum under the condition of homogeneously broadened
gain.
Regarding the lineshape and linewidth of the individ-

ual modes, the calculation with completely inhomoge-

neous gain produced a Lorentzian-like lineshape with
strongly suppressed tail and a linewidth close to the
spectral width of the pure cavity. The calculation
with homogeneously broadened gain produced likewise
a Lorentzian lineshape; however, the linewidth remained
unsaturated long time after having achieved power satu-
ration, and continued to decrease towards the calculation
limit. These results strongly support the conclusion that
the reason behind the very narrow linewidth reported
for di�erent kinds of lasers lies simply in the frequency
competition driven by the homogeneous contribution to
the overall broadening of the gain pro�le. And there-
fore, in order to allow for a direct comparison with ex-
periment, the model has to be improved concerning �rst
and foremost its capability to account simultaneously for
both homogeneous and inhomogeneous contributions to
the overall broadening of the gain pro�le.
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