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The simple 3D-chaotic dynamics of an autonomous oscillator circuit was studied by measuring its responsible
in the form of phase-portrait, power spectrum and chaotic time series. The new realization combines attractive
features of the current feedback op-amp operating in both voltage and current modes to construct the active
linear negative conductance. The component count is reduced and the chaotic spectrum is extended to higher
frequencies. In addition, a bu�ered and isolated voltage output directly representing a state variable is made
available. The circuit consists of just three linear elements (two capacitors and one inductor), one linear negative
conductance and two ideal diodes. The power spectra are presented to con�rm the strong chaotic nature of the
oscillations of the circuit. The performance of the circuit is investigated by means of experimental simulation and
numerical con�rmation of the appropriate di�erential equations. The features of the obtained results are respected
for various engineering systems such as chaos communication systems with robustness against various interferences.

PACS: 05.45.−a, 05.45.Xt, 05.45.Ac

1. Introduction

In the present report the behavior of a third-order au-
tonomous oscillator circuit has been studied. This cir-
cuit consists of two active elements, one linear negative
conductance and one cubic nonlinearity exhibiting sym-
metrical piecewise-linear v�i characteristics, two linear
capacitances (C1 and C2) and one linear inductor (L)
are also included in the circuit, serve as the control pa-
rameters [1�5].
Most chaotic and bifurcation e�ect cited in the litera-

ture have been observed in electrical circuits. They in-
clude the period-doubling route to chaos [6], the intermit-
tency route to chaos [7], and the quasi-periodicity route
to chaos and of course the crisis [8�10]. This popularity
is attributed to the advantages which electric circuits of-
fer to experimental chaos studies, such as robustness and
convenient implementation.
In this work we introduce an attractive combined

voltage�current capabilities of a current feedback op-amp
(CFOA) which are used to synthesize linear negative con-
ductance. In addition, a bu�ered and isolated voltage
output that directly represents a state variable is made
available while the operating frequency is extended. The
simple-3D autonomous third-order oscillator circuit real-
izes period-doubling route to chaos followed by periodic
window and then to strong chaos through boundary cri-
sis etc. We consider that such complicated chaotic time
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waveforms are expected to be utilized for realization of
several chaotic applications such as chaos communication
system with robustness against various interferences in-
cluding multi user access.

2. Experimental realization

The experimental realization of the third-order au-
tonomous oscillator and symmetrical cubic nonlinear
characteristics are shown in Fig. 1a,b respectively
[11, 12]. The characteristics of the negative conductance
are mathematically represented by i = −G1V1.

Fig. 1. Simple-3D autonomous oscillator circuit.
(a) Symmetrical cubic nonlinear characteristics.

Figure 1 illustrates a circuit diagram with which the
authors deal in this paper, where L, C1, C2, and − 1

R1
=

(586)
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−G1 are an inductor, capacitors, and a linear negative
conductance, respectively. The symmetrical cubic non-
linearity is designed with the help of two signal diodes.
The v�i characteristics of the global nonlinearity which
can therefore be approximated by a cubic function of the
form with a < 0 and b > 0:

f(V ) = v + aV + bV 3.

The constant term v describes the input current o�set
of the op-amp which can be practically adjusted to zero
using the potentiometer (v = 0). By applying Kirch-
ho�'s laws to the equivalent circuit of Fig. 1 we obtain
the following set of di�erential equations:

C1
dV1

dt
= −(G1V1 + iL),

C2
dV2

dt
= iL − iN ,

L
diL
dt

= V1 − V2. (1.1)

While V1 and V2 are the voltages across the capacitors
C1 and C2, and iL denotes the current through the in-
ductance (L), respectively, the term iN representing the
characteristics of the symmetrical cubic nonlinearity can
be expressed mathematically as

iN = f(V2) = aV2 + bV 3
2 . (1.2)

The simple-3D autonomous oscillator circuit is also
truly the Van der Pol�Du�ng oscillator. This is because
there is no locally active resistance (R) in this circuit,
only varying the inductance (L) value, this circuit ex-
hibits very interesting dynamical phenomena like period-
-doubling bifurcation sequence leading to chaos, period-
-doubling window and then to strong chaos through
boundary condition [13, 14]. However, in the parame-
ter regimes investigated, important features like period-
-doubling window, strong chaos have not been reported.

For our present experimental study we have chosen
the following typical values of the circuit in Fig. 1:
C1 = 10 nF, C2 = 3 nF. The negative conductance
G1 = −0.14705 mS and cubic nonlinearity a < 0 and
b > 0. Here the variable inductor (L) is assumed to be
the control parameter.

By increasing the value of L from 100 mH to 250 mH,
the circuit behavior of Fig. 1 is found to transmit from a
period doubling route to chaos, and then to period dou-
bling window through strong chaos followed by boundary
crisis etc. From our experimental investigations, we �nd
that for the value of L above 100 mH, limit cycle motion
is obtained, when the value of L is increased, particularly
in the range L = 210 mH the system displays a double
band chaotic motion. The projection of the attractors
of the V1 − V2 and current sensing resistor with voltage
plane of cathode ray oscilloscope are shown in Fig. 2 for
various values of control parameter L. Figure 3 shows
the experimental chaotic time series which were regis-
tered using a cathode ray oscilloscope for discrete values
of L serving as the control parameter.

Fig. 2. Typical experimental phase portraits of the
system corresponding to di�erent regimes.

Fig. 3. Time-domain measurements of the proposed
autonomous oscillator.

The third-order autonomous oscillator circuit with the
symmetrical cubic nonlinearity can produce strong chaos
seen in Fig. 4 from which we observe clearly that there
are large broad-band power spectra. The distribution
of power in a signal x(t) is the most commonly quan-
ti�ed by means of the power density spectrum or sim-
ply power spectrum. It is the magnitude-square of the
Fourier transforms of the signal x(t). It can detect the
presence of chaos when the spectrum is broad-banded.
The power spectrum corresponding to the voltages V1(t)
and V2(t) waveforms across the capacitors C1 and C2 for
the chaotic regimes are shown in Fig. 4 which resembles
broad-band spectrum noise.

3. Numerical realization

For a convenient numerical analysis of the experimen-
tal systems given by Eqs. (1.1), (1.2), we rescale the

Fig. 4. Power spectrum of the signals (a) V1(t) and (b)
V2(t) from the circuit of autonomous oscillator.
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parameters as V1 = V x1, V2 = V x2, iL =
√

C1

L V x3,

t =
√
LC1τ , v = C1

C2
, γ = G1

√
L
C1
, α = a

√
L
C1
,

β = b
√

L
C1
, and then rede�ne τ as t. Then the normal-

ized equations of the third-order autonomous oscillator
circuit (Fig. 1) are

x1 = −(γx1 + x3),

x2 = v(x3 − αx2 − βx3
2),

x3 = (x1 − x2), (2.1)

where

f(x2) = αx2 + βx3
2. (2.2)

The dynamics of Eqs. (2.1), (2.2) now depends on the
parameters α, β, γ, v and V = 1. The experimental re-
sults have been veri�ed by computer simulation of the
normalized Eqs. (2.1), (2.2) using the standard fourth-
-order Runge�Kutta method for a speci�c choice of sys-
tem parameters employed in the laboratory experiments.

Fig. 5. Chaotic region observed from the circuit of
Fig. 1. Projection onto (a) (), (b) (V1, V2), (c) ( , ),
and (d) ( , ) plane.

Fig. 6. Time waveform for L1 = 210 mH for (a) V1 and
(b) V2.

That is, in the actual experimental setup the induc-
tor L is varied from L = 100 mH up to 250 mH.
Therefore in the numerical simulation we study the cor-
responding Eqs. (2.1), (2.2) for L in the range L =
(100 mH, 250 mH). From our numerical investigations,
we �nd that for the value of L above 100 mH, limit cycle
motion is obtained, when the value of L is increased, par-
ticularly in the range L = 210 mH the system displays a
double band chaotic motion and then to period-doubling

window through strong chaos followed by boundary crisis
etc. These numerical results are summarized in the phase
portraits given in the (x1−x2), and (x2−x3) planes which
are shown in Fig. 5. Figure 6 shows that the numerical
chaotic time series was registered using a discrete value of
�L� serving as the control parameter. It is gratifying to
note that the numerical results agree qualitatively very
well with that of the laboratory experiments.

4. Conclusions

It appears that the autonomous oscillator circuit pre-
sented in this paper is one of the simplest third-order sys-
tems reported so far. The circuit provides a higher band-
width of chaotic signal with bu�ered output and func-
tionally was demonstrated using a commercial CFOA. Its
simplicity arises from the fact that (i) the negative con-
ductance is a simple current feedback op-amp impedance
converter. (ii) The symmetrical cubic nonlinearity is syn-
thesized from two signal diodes. (iii) The circuit equa-
tions are the most simple because there is no locally
active resistor (R) in the circuit, where the inductance
(L) is the control parameter. The attractive features of
this circuit are the presence of period-doubling route to
chaos, period-doubling window through strong chaos fol-
lowed by boundary condition etc. It is of further interest
to study these aspects also in this system as well as the
intermittency route to chaos and synchronization of cou-
pled chaotic circuits of the present system for improved
high security communication systems.
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