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The present research examines the unsteady isothermal �ow of a gas through a semi-in�nite micro-nano
porous medium, a nonlinear boundary value problem on semi-in�nite interval. This problem is solved by two
di�erent methods and compare their results with solution of other methods is compared. Also through the conver-
gence of these methods, the accurate initial slope y(x) with good capturing the essential behavior of y(x) is obtained.

PACS: 02.70.Bf, 68.47.�b, 87.10.Ed, 95.90.+v

1. Introduction

There are many problems in science and engineer-
ing arising in unbounded domains which can be mod-
eled by singular and nonsingular boundary value prob-
lems. The application of these problems involves chemi-
cal kinetics, astrophysics, experimental and mathemati-
cal physics, nuclear charge in heavy atoms, thermal be-
havior of a spherical cloud of gas, thermodynamics, pop-
ulation models, �uid mechanics and many other topics.
Several techniques including decomposition, variational
iteration, �nite di�erence, polynomial spline, homotopy
analysis method, and shooting methods have been devel-
oped for solving such problems.

Gas�solid processes like adsorption, are used in the
chemical industries to separate solutes from a �uid
stream. Transport phenomena and di�usion in micro-
-nano porous materials have attracted the researchers'
attention for a long time. The modeling of gas �ow
through a porous media is quite valuable because of its
importance in investigating gas-solid processes. The �ow
of gas through a semi-in�nite porous medium initially �lls
with gas at a uniform pressure P0 > 0, at time t = 0, the
pressure on the out�ow face is suddenly reduced from P0

to P1 ≥ 0 (P1 = 0 in the case of di�usion into a vacuum)
and thereafter, maintained at this lower pressure. The
unsteady �ow of gas in a porous medium is modeled by
a nonlinear partial di�erential equation [1�3] as follows:

∇2(P 2) = (2Φµ/k)
∂P

∂t
, (1)

where P is the pressure within porous medium, Φ is the
porosity, µ is the viscosity, k is the permeability and t is
the time.

In the one-dimensional medium extending from z = 0
to z = ∞, Eq. (1) reduces to

∗ e-mail: abbasbandy@yahoo.com

∂

∂z

(
P
∂P

∂z

)
= (Φµ/k)

∂P

∂t
, (2)

with the boundary conditions

P (z, 0) = P0, 0 < z < ∞;

P (0, t) = P1(< P0), 0 ≤ t < ∞.

Now, by using the new independent variable [4]:

x =
z√
t

(
A

4P0

)1/2

, (3)

and the dimension-free variable y, de�ned by

y(x) = α−1

(
1− P 2(z)

P 2
0

)
, (4)

where A = Φµ/k and α = 1− P 2
1

P 2
0
, a similarity solution is

obtained. In terms of these variables, the problem takes
the form (unsteady gas equation)

y′′(x) +
2x√

1− αy(x)
y′(x) = 0,

x > 0, 0 < α < 1. (5)

The typical boundary conditions imposed by the physical
properties are

y(0) = 1, lim
x→∞

y(x) = 0. (6)

A substantial amount of numerical and analytical work
has been invested so far on this model [1�3]. The major
drawback of these methods is huge computational work.
This problem (5) was handled by Kidder [2]. Also a per-
turbation technique is carried out to include terms of sec-
ond order, and the convergence of the obtained expansion
is guaranteed through physical properties of y(x), and it
is shown that the complexity of the calculations increases
rapidly with increasing order of the terms. Wazwaz [5]
proposed modi�ed Adomian decomposition method, and
[M/M ] Padé approximation method for this equation, in
spite of the fact that M is the degree of polynomial in
series solution.

Aslam Noor and Mohyud-Din [6] considered modi�ed
variational iteration method for this equation. Parand
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et al. [7] solved this problem by using pseudospectral
method with rational Chebyshev and modi�ed general-
ized Laguerre functions. Taghavi et al. [8] solved it by
Lagrangian method based on modi�ed generalized La-
guerre functions. Khan et al. [9] used modi�ed Laplace
decomposition method (MLDM) coupled with Padé ap-
proximation technique to solve this equation. Mohyud�
Din et al. [10] applied the coupling of He's polynomials
to the correct functional of variational iteration method
to solve the problem (5). This equation has been recently
considered by Rezaei et al. [11] with the orthogonal ratio-
nal Legendre and Sinc functions with using pseudospec-
tral method.
In this paper most of the obtained results of y′(0) are

the same, because the researcher used Padé approxima-
tion methods with di�erent functions. See Table I to
compare obtained results. In this table, N is the degree of
orthogonal polynomial used in the method and MGLFM,
RCM, MGL, SINC and RLP are the abbreviation for
modi�ed generalized Laguerre function method, rational
Chebyshev method, modi�ed generalized Laguerre func-
tion method, pseudospectral method based on sinc func-
tion, and rational Legendre pseudospectral method, re-
spectively. More results can be found for other values
of α in the mentioned papers.

TABLE I
Values of y′(0) for α = 0.5.

Paper Method y′(0)

Wazwaz [5] Padé[2/2] −1.373178096
Padé[3/3] −1.025529704

Aslam Noor [6] Padé[2/2] −1.373178096
Padé[3/3] −1.025529704

Parand [7] MGLFM (N = 6) −1.36417503
MGLFM (N = 7) −1.38213483
RCM (N = 6) −1.10805718
RCM (N = 7) −1.26259357

Taghavi [8] MGL (N = 6) −1.37310852
MGL (N = 7) −1.37317352

Khan [9] Padé[2/2] −1.373178096
Padé[3/3] −1.025529704

Mohyud-Din [10] Padé[2/2] −1.373178096
Padé[3/3] −1.025529704

Rezaei [11] SINC (N = 6) −1.188228002
SINC (N = 8) −1.188625937
SINC (N = 16) −1.188689251
SINC (N = 32) −1.188692320
RLP (N = 6) −1.188610520
RLP (N = 8) −1.188650543
RLP (N = 16) −1.188677428
RLP (N = 32) −1.188687197

It will be shown that the obtained results by Rezaei
et al. [11] are more accurate than others. The aim of this
paper is to obtain more accurate results by using two
di�erent approaches which are implicit �nite-di�erence

scheme known as the Keller-box method [12, 13] and the
shooting method [13].

2. Solution procedures

2.1. Finite-di�erence method

To solve the di�erential Eq. (5) which is subject to
boundary conditions (6), the �rst Eq. (5) is converted
into a system of two �rst-order equations, and the di�er-
ence equations are then expressed by using central dif-
ferences. For this purpose, the new dependent variable
w(x) is introduced, so that Eq. (5) can be written as

y′(x) = w(x), (7)

w′(x) =
−2xw(x)√
1− αy(x)

. (8)

Now, by using the Taylor series expansion of 1√
(.)
, Eq. (8)

is changed to

w′(x) = −2xw(x)
[
1 + c1αy(x) + c2α

2y(x)2+

. . .+ cmαmy(x)m
]
, (9)

where m is an arbitrary constant natural number and
c1 = 1

2 , c2 = 3
8 , c3 = 5

16 , and so on. Now, we consider
the segment xj−1xj , which is de�ned as:

x0 = 0, xj = xj−1 + hj , xJ = x∞, (10)

where hj is ∆x-spacing and j = 0, 1, . . . , J is a sequence
number that indicates the coordinate location. In the
Keller-box method, the �nite-di�erence approximations
to the ordinary di�erential Eqs. (7) and (9) are writ-
ten for the midpoint xj−1/2 of the segment xj−1xj for
j = 1, 2, . . . , J as

yj − yj−1 −
1

2
hj(wj + wj−1) = 0, (11)

wj − wj−1 + hjxj−1/2(wj + wj−1)

×
[
1 +

c1α

2
(yj + yj−1) +

c2α
2

4
(yj + yj−1)

2

. . .+
cmαm

2m
(yj + yj−1)

m
]
= 0. (12)

The transformed boundary layer thickness xJ is su�-
ciently large, so that it is beyond the edge of the bound-
ary layer. The boundary conditions are

y0 = 1, yJ = 0. (13)

Now by Newton's method, the nonlinear system is lin-
earized (11), (12) and then, the obtained linearized dif-
ference equations can be solved by the block-elimination
method as outlined by [3, 13], since the obtained sys-
tem has block-tridiagonal structure. The obtained re-
sults for linear initial pro�le and stop criterion 10−8 on
y′(0) with hj = h and x∞ = hJ are shown in Table II.
Table III shows the values of y(x) by using perturbation
technique [2], and Padé[3/3] [5] for α = 0.5. Table IV
shows that the initial slope y′(0) increases with the in-
crease of α.
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TABLE II

Values of y′(0) for α = 0.5 for di�erent x∞.

M J h y′(0)

6 30 1/10 −1.1938713177347504
60 1/20 −1.1922883859473303
90 1/30 −1.1919951287546457
120 1/40 −1.1918924798983241
150 1/50 −1.1918449665961557
300 1/100 −1.1917816140076933
600 1/200 −1.1917657755896378
1200 1/400 −1.1917618159682022

8 1200 1/400 −1.1918059634783928
10 1/400 −1.1918126190284244
12 1/400 −1.1918137142588647
14 1/400 −1.1918139058828805
16 1/400 −1.1918139409674497
18 1/400 −1.1918139476201857
20 1/400 −1.191813948917348
20 2000 1/40 −1.1919230334799826

5000 1/100 −1.1918118315451425
10000 1/200 −1.1917959449569746
50000 1/1000 −1.1917908612172277

30 2000 1/40 −1.1919230338118607
30 5000 1/100 −1.1918118318711821
30 10000 1/200 −1.1917959452821487
30 50000 1/1000 −1.1917908615421229

TABLE IV

Initial slopes y′(0) for various values of α, for M = 30,
J = 50000.

α Padé[2/2] Padé[3/3] Present method

0.1 −3.556558821 −1.957208953 −1.139007356865483

0.2 −2.441894334 −1.786475516 −1.1504756481362894

0.3 −1.928338405 −1.478270843 −1.1629416335500269

0.4 −1.606856838 −1.231801809 −1.1766158581496988

0.5 −1.373178096 −1.025529704 −1.1917908615421229

0.6 −1.185519607 −0.8400346085 −1.2088944130728032

0.7 −1.021411309 −0.6612047893 −1.228598743345502

0.8 −0.8633400217 −0.4776697286 −1.2520835659442726

0.9 −0.6844600642 −0.2772628386 −1.281847782063427

2.2. Shooting method

The non-linear ordinary di�erential Eq. (5) together
with the boundary conditions (6) are solved numeri-
cally using Nachtsheim�Swigert shooting iteration tech-
nique [14] (guessing the missing value) along with explicit
Runge�Kutta initial value solver with sti�ness detection
capability by Mathematica Software.
As we know, in a shooting method, the missing initial

condition at the initial point of the interval is assumed
by user, and the di�erential equation is solved numeri-
cally as an initial value problem to the terminal point.

The accuracy of the assumed missing initial condition is
then checked by comparing the calculated value of the
dependent variable at the terminal point with its given
value there. If a signi�cant di�erence exists, then another
value of the missing initial condition must be assumed
and the process is repeated. This process is continued
until the reasonable agreement between the calculated
and the given condition at the terminal point is obtained
within the speci�ed degree of accuracy. For this type of
iterative process, one naturally needs to a systematic way
of �nding each succeeding (assumed) value of the missing
initial condition.

In this method the asymptotic boundary condition (6)
is replaced by the condition that y(x) = 0 to a su�cient
degree of accuracy at x = x∞, where x∞ is the value
of the independent variable at the edge of the boundary
layer. The boundary-value problem is equivalent to the
problem of �nding a value of y′(0) for which the boundary
condition at the edge of the boundary layer is satis�ed.
With the notation z = y′(0). It is observed that a small
change ∆z in z changes value of y by the amount

∂y

∂z
∆z,

so, the necessary correction to the �rst approximation
comes from the solution of the following linear equation:

y(x) +
∂y

∂z
∆z = 0, (14)

at x = x∞. The solution of (14) for ∆z can be obtained

if we can evaluate ∂y
∂z at x∞. So, we must use di�erenti-

ation of (5). With notation

yz =
∂y

∂z
, y′z =

∂y′

∂z
, . . . ,

and taking di�erentiation of (5) with respect to z, we

have

y′′z (x) +
2x√

1− αy(x)
y′z(x) + y′(x)yz(x)

× αx√
[1− αy(x)]3

= 0, (15)

with initial conditions

yz(0) = 0, y′z(0) = 1. (16)

Given an arbitrary initial estimation of z = y′(0), subse-
quent values of z can be computed by integrating Eqs. (5)
and (15) and applying the Newton�Raphson method to
obtain the corrections. For this reason, we need to the
value of x∞ for getting the integration. After this, we
show the tentative values of x∞ by xstop. We can start
our process by a small value for xstop, and in each it-
eration try to �nd ∆z and modify xstop. For this, we
use from the boundary condition (6) at in�nity and its
derivative. That is, ∆z should be chosen so that both
equations

y(x) + yz(x)∆z = 0, y′(x) + y′z(x)∆z = 0, (17)
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TABLE III

Approximations of y(x) for present methods in comparison with other method,
for α = 0.5, M = 30, J = 50000.

x Kidder [2] Padé[3/3] [5] Rezaei [11] Present method

0.1 0.8816588283 0.8979167028 0.8816297930 0.8813646572742952

0.2 0.7663076781 0.7985228199 0.7666243657 0.7658288222744776

0.3 0.6565379995 0.7041129703 0.6565307085 0.656000694626484

0.4 0.5544024032 0.6165037901 0.5545172476 0.5538989492480791

0.5 0.4613650295 0.5370533796 0.4628652574 0.4609427659504205

0.6 0.3783109315 0.4665625669 0.3814536078 0.37798158206878896

0.7 0.3055976546 0.4062426033 0.3095060359 0.3053523296040834

0.8 0.2431325473 0.3560801699 0.2466311657 0.24295437638061612

0.9 0.1904623681 0.3179966614 0.1927749120 0.19033421260699213

1.0 0.1587689826 0.2900255005 0.1478076673 0.14677328712194618

are satis�ed at x = xstop. Now, we have two equations
with one unknown ∆z, and by least squares method
we can �nd it. Let δ1 = y(xstop) + yz(xstop)∆z, δ2 =
y′(xstop)+y′z(xstop)∆z, and the error E = δ21+δ22 . It can
be found that E takes its minimum when ∆z is obtained
by doing least squares method on Eqs. (17). In Fig. 1,
the error E is shown plotted as a function of z for various
values of xstop.

Fig. 1. Error as function of y′(0) for di�erent values
of xstop.

Let Emin is the minimum of E with respect to z. Now,
in next step we want to decrease the value of Emin. At
�rst, we start with a small value for xstop, say xstop = 1.
A step size of ∆x = 0.01 was selected to be satisfactory
for a convergence criterion of 10−8 in all cases (as last
subsection). The value of xstop was found to each itera-
tion loop by the statement xstop = xstop +∆x.

The maximum value of xstop to each value of α de-
termined when the value of ∆z (the variation of the un-
known boundary conditions at x = 0) does not change
to successful loop with error less than 10−8. See Fig. 2
for residual error of Eq. (5) obtained by this approach.
Table V shows that the initial slope y′(0) increases with
the increase of α which obtained by this method. Fig-
ure 3 shows the obtained y(x) for di�erent values of α.

Fig. 2. Residual error of (5) for α = 0.5.

Fig. 3. Approximation of y(x) for di�erent values of α.

3. Concluding remarks

In this paper, two mentioned powerful and e�cient
methods are implicit �nite-di�erence Keller-box method
and shooting method to solve di�erential equation of gas
�ow through a micro-nano porous media. This model is
quite valuable in order to its importance in investigating
gas�solid processes. By comparison to other previous
researcher's numerical solutions, the obtained results in
these two methods have provided acceptable approach
for nonlinear unsteady gas equation. Consequently we
determine the accurate initial slope y′(0) ≈ −1.191791
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TABLE V

Initial slopes y′(0) for various values of α.

α xstop Present method

0.1 3.76 −1.1390073222058392
0.2 3.75 −1.1504756086298318
0.3 3.75 −1.1629415776840015
0.4 3.75 −1.176615782984229
0.5 3.74 −1.1917907719590468
0.6 3.74 −1.2088942932466626
0.7 3.73 −1.2285985979448646
0.8 3.73 −1.2520839101594896
0.9 3.72 −1.2818814468001043

for α = 0.5 with good capturing the essential behavior
of y(x).
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