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In the present paper, we construct the travelling wave solutions of two nonlinear Schrédinger equations with
variable coefficients by using a generalized extended (%)—expansion method, where G = G(§) satisfies a second

order linear ordinary differential equation. By using this method, new exact solutions involving parameters,
expressed by hyperbolic and trigonometric function solutions are obtained. When the parameters are taken as

No. 3

special values, some solitary wave solutions are derived from the hyperbolic function solutions.

PACS: 02.30.Jr, 05.45.Yv, 02.30.1k

1. Introduction

During the past decades, investigations on the opti-
cal fiber communications have become more and more
attractive [1], in which the optical solitons have their
potential applications in optical fiber transmission sys-
tems [2, 3]. As we all know, solitonic structures are seen
in many fields of sciences and engineering [4, 5], among
which an optical soliton exists in a fiber on the basis of
the exact balance between the group velocity dispersion
(GVD) and the self-phase modulation (SPM). The prop-
agation of the optical solitons is usually governed by the
nonlinear Schrédinger equation (NLSE), which is one of
the most important models in modern nonlinear science.
Moreover, much attention has been paid to the investiga-
tion on the generalized NLSEs with constant coefficients
as a kind of ideal models of the much more complicated
physical problems [6, 7]. As a matter of fact, in a real
fiber there exist some fiber nonuniformities to influence
various effects such as the gain or loss, GVD and SPM,
etc. Considering the varying dispersion, nonlinearity and
gain /loss, we would like to investigate the following two
variable coeflicients nonlinear Schrédinger equations:

1. The nonlinear Schrédinger equation with the gain
and variable coefficients

iuy + %ﬁ(x)utt + a(z)uul* — iy(z)u =0, (1)

where u(z,t) is the complex envelope of the electrical
field, = is the normalized propagation distance along
the fiber, t is the retarded time and the subscripts de-
note partial derivatives. All the parameters 5(z), a(z)
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and ~y(x) are real analytic functions of the normalized
propagation distance x, which represent the GVD, SPM
and distributed gain/loss, respectively. Equation (1) de-
scribes the amplification or absorption of pulses prop-
agation in a single mode optical fiber with distributed
dispersion and nonlinearity. This equation appears in
many fields of physical and engineering sciences, e.g., in
plasma physics [8], arterial mechanics [9], long-distance
optical communications [10-12]. It describes such situ-
ations more realistically than their constant coefficient.
In practical applications, Eq. (1) can be used to describe
the stable transmission of managed soliton.

2. The higher-order nonlinear Schrodinger equation
with variable coefficients

Uy = 10y (2)ugy + i (@)u|ul?® + as(z)ugy
+aa(@) (ulul?), + as(@)u(|uf®), + (@), (2)

where «a;(x) (i = 1,2,...,5) are the distributed param-
eters, which are real analytic functions of the propaga-
tion distance x and t is the related time while I'(z) de-
notes the amplification or absorption coefficient. Equa-
tion (2) has been paid attention by many researchers
[13-15] due to its wide range of applications. It describes
the femtosecond pulse propagation which can be applied
to telecommunication and ultrafast signal-routing sys-
tems extensively in the weakly dispersive and nonlinear
dielectrics with distributed parameters. The constant co-
efficients of Eq. (2) has been studied well and the exact
solutions (including the dark solitary wave and bright
solitary wave) are presented [16, 17]. It is clear that
both Egs. (1) and (2) are very important in the field of
mathematical physics. Therefore, it is a significant task
to search for explicit solutions of the two equations.

(573)
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Up to now, many powerful methods have been es-
tablished and developed to obtain analytic solutions
of NLSEs, such as the inverse scattering method [18],
the Hirota bilinear method [19], the Backlund trans-
formation [20], the Painlevé expansion [21], the varia-
tional iteration method [22], the Adomian decomposi-
tion method [23], the tanh function method [24], the
Jacobi elliptic function expansion method [25], the exp-
-function method [26] and so on. More recently, the
(%)—expansion method [27-30] has been proposed to
obtain traveling wave solutions. This method is firstly
proposed by Wang et al. [27] for which the traveling
wave solutions of the nonlinear evolution equations are
obtained. This method has been extended to solve

. . . . leld
difference-differential Eqs. [31]. The improved (& )-

-expansion method has been used in [32-34]. Recently,
Guo and Zhou [35] and Zayed and Al-Joudi [36] have
obtained the exact traveling wave solutions of some non-
linear partial differential equations (PDEs) using an ex-

tended (%)—expansion method.

In the present article, we use the generalized extended

(%)—expansion method to derive the exact traveling

wave solutions of Egs. (1) and (2). The generalized ex-
tended (%)—expansion method used in this article can

be considered as a greater generalization of that used in
[35, 36]. This method can be applied to further equa-
tions such as difference-differential equations which can
be done in forthcoming articles.

2. Description of a generalized extended (%')-expansion method

For a given nonlinear PDEs with independent variables X = (z,y, z,t) and dependent variable u, we consider the

PDE

F(uvutvuxvuttvumxvuxta . ) - 07

(3)

where F' is a polynomial in v and its partial derivatives. In order to solve Eq. (3), we use the generalized wave

transformation

uw(X) =u(§), &=¢£(X).

(4)

G'(&)

Thus, the solution of Eq. (3) can be expressed by a polynomial in ( el63) ) as follows:

G(¢) G(&)

u(X) = ag(X) + fj a:(X) [G’@)y () [G/(or

Nuid

3(6]) :

where G = G(§) satisfies the following second order linear ordinary differential equation:

G"(§) +nG(§) =0,

(6)

where p is a nonzero constant and ¢ = %1, while £ = £(X), a;(X) and b;(X) are analytic functions of X to be

d

determined later and ’ = dE-

To determine u(X) explicitly, we consider the following four steps:

Step 1. Determine the positive integer M by balancing the highest order nonlinear term(s) and the highest order

partial derivatives of u(X) in Eq. (3).

. . . . a’ J
Step 2. Substitute (5) along with Eq. (6) into Eq. (3) and collect all terms with the same powers of (5)

N\ , . . . . . .
and (%) \Jo {1 + %(%)2} together and equating each coefficient to zero, yield a set of over-determined differential

equations for ap(X), a;(X), b;(X) and £(X).

Step 3. Solve the system of over-determined differential equations obtained in Step 2 for a;(X), b;(X), (i =

0,1,..., M) and &£(X) by the use of Maple or Mathematica.

Step 4. Use the results obtained in above steps to derive a series of fundamental solutions of Eq. (3), since the
solutions of Eq. (6) have been well known for us. Thus, we can obtain the exact solutions of Eq. (3).

Remark 1: From the general solution of Eq. (6) we have the ratio

G'(€)

Aexp(iey/Tulsgn (1)) — Bexp(—iey/Tulsen (1)

GO Iulsgn(u)AeXp<i€

where A and B are arbitrary constants.

| Sgn(u)) +B eXp(—iﬁx/ | sgn(u)) 7
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Remark 2: It is necessary to point out that by adding the term (%) \Jo[l+ %(%)2] into (5), the ansatz proposed
here is more general than the ansatz in the original (%)—expansion method [27]. Therefore, the generalized extended

(%)—expansion method is more powerful than the original (%)—expansion method and some new types of traveling
wave solutions and solitary wave solutions would be expected for some NPDEs. If we choose the parameters in (5)

and (6) to take special values, the original (%)—expansion method can be recovered by our proposed method.

3. Applications

In this section, we will apply the generalized extended (%)—expansion method to construct the exact solutions of

two nonlinear evolution equations with variable coefficients via the nonlinear Schrédinger equation with the gain and
variable coefficients (1) and the higher-order nonlinear Schrédinger equation with variable coefficients (2).
3.1. Example 1. The nonlinear Schrédinger equation with the gain and variable coefficients
In order to obtain the exact solutions of Eq. (1), we assume that the solution of this equation can be written in the
form

u(z,t) = v(x,t) exp(if(x, t)), (8)

where v(x,t) and (z,t) are amplitude and phase functions, respectively. Substituting (8) into (1) and separating the
real and imaginary parts, we obtain

—vl, + %ﬁ(x) [V — U(@t)z] +a(z)v® =0, (9)
and
Uy + %ﬁ(m)@vtet + v0y] — y(x)v =0. (10)
Balancing vy and v3 in Eq. (8), we have M = 1. We assume that Eqgs. (9) and (10) have the following formal
solutions:
/ , 2
v(€) = ag(x) + a1 (x) ((é,((g))) +b1(x)y|o |1+ i(gég) ] , (11)
and
0(z,t) = f(x)t* + g(z)t + h(z), (12)

where G = G(§) satisfies Eq. (6) and £ = p(x)t+ ¢(x). The functions f(x), g(x), h(x), p(x) and g(z) are differentiable
functions of the normalized propagation distance = to be determined. Substituting (11) and (12) into (9) and (10),
. k
. ! J ’
collecting all terms with the same powers of ¢* (%) ( 0[1 + i(%)ﬂ) ,1=0,1,2,57=0,1,2,3, k= 0,1, together

and setting them to zero, we have a system of over-determined differential equations which can be solved by Maple
or Mathematica to get the following cases:

Case 1.
ap(z) =0, ai(x)=0, by(z)=cie/ 7@ pay=cy, qlz) = —0203/B(w)dx +ecs, f(x)=0,

o) = o he) =gt + ) [B0dntes, alo)= (TG Yo ) = gio),

v(z) = (), (13)

In this case, we have the exact solution

ulsen(u) (Ae(i6vIsEn ) — Bexp(~iey/Iulsen ()

T Ve (et + B (e e
X exp(i(c;;t— %(ucg +c3) /5(m)dx+65> +/’y(x)dx>7 (14)
where

E=cy (t - c3/5(x) dx) +cq. (15)
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ao(z) =0, ai(x) :Clefv(x)dz, bi(z) =0, p(x)=ca, q(x) :*0263/5(I)dx+04, f(z)

(g —) [s@aztes, at)= "2 20w 5= pa,

1

DN =

gle) =cs, h(x)=

In this case, we have the exact solution

B Aexp(ifm) —Bexp(—iE\/m))
u(§) = 101m(Aexp(i§m> +Bexp(—i£m)

X exp(i <03t + %(Q;ch —c3) /6(9:)d:r + C5> + /’y(x)dx),

where & has the same form (15).
Case 3.

a(@) =0, a@)=0, bi(@)=cVT@e/ D p) = cf(@), )= sersf(@) + s,

2
1 1, 5 5
@) = ST e 0 =al@) hw) = i+ ) ) e,

) =) ale) = LD I 2@ ) = ).

In this case, we have the exact solution

() = ¢ - || sem (1) (Aexp(ig\/m) Bexp(ig\/m))z
o i\ Aesp(iey/Talsan () + Besp(~icy/Tulsan(n)

L (7 et + g (ne + )
(Vrmmars) oo (5t )+ frae),

where

¢ = ca(2t+c3) + ¢4
C 22 B(x)dx +cq)

Case 4.

ao(z) =0, ai(z)=civy f(ff)ef%z)dz , bi(z)=0, plx)=caf(z), qx)= %@Q&f(m) +cq,
F0) = s ramdrra @ =l h)= 7 et )@ e, Bl = 5le),
a(x) — d-g(;c) %G—foy(w)dx 7 ’Y(LL') _ ’Y(l’) 7

In this case, we have the exact solution

ulsen () Aexp(i€y/Tulsgn(n)) — Bexp(—igy/Julsen (4]
2 [ Bx)dz + cq Aexp(ifm) + Bexp(—ifm)

. t2+03t—i(2uc§—c§)
><exp<1< 2 [ Ble)de + o +cs +/’y(x)dx ,

where £ has the same form (20).

u(€) = ic

(16)

(17)

(19)

(20)

(22)
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Case 5.

ap(z) =0, ai(z)= cla\/zef“’(’“')d“’, bi(z) = cred Y@ @) =y, q(@) = —cacs /ﬁ(:p)dx +cq,

F@) =0 ale) = o, h) = (ud—2) [ Bt es. ale) = 2RI s,

Blx) =B(x), ~(x)="(z). (23)

In this case, we have the exact solution

=c ] Aexp(iﬁ\/m) +Bexp(—i§\/m)

ol || sgn (1) (Aexp(if\/M) Bexp(ig\/m))z
no \ Ao (ieylulsen()) + Besp (i lulsen ()

X eXp<i<63t—|- i(ucg —2c3) /ﬁ(x)dx+C5> —|—/’y(x)dx), (24)

where ¢ has the same form (15).

Case 6.

ap(r) =0, ai(z)=cio U‘Z(x)ef”(x)dx, bi(z) = c1/f(a)el @9 p(z) = ey f(x),

q(z) = %Czc3f(95) +ea, flo)= W7 9(x) = caf(x), %(MCE —2c3) f(x) + s,

o) = B(o). ale) = LIRS 2 @0 () 5(a). (25)

In this case, we have the exact solution
)= oL 1o [l ) Aexp(i¢y/Tulsen(w)) — Bexp(—i¢y/ulsen (1))
n Aexp(iey/Tulsgn (1)) + Bexp(~i&y/Tulsen (1)

I R P 1T 7)) (Aexp(if\/m> Bexp(ifx/m)>2
i\ Aexp(iey/Tulsgn () + Bexp(—i&y/Julsen () )

N P £+ est — 5 (ucs — 2c5) ¢ z)dx
X( 2f6(x)dx+c(,> p( ( 2 [ B(z)dz + co + 5> +/’Y( )d )a (26)

where ¢ has the same form (20). In particular, we deduce from (14) that the solitary wave solutions of Eq. (1) are
derived as follows:

If B=0, A#0 and p <0, then we obtain

u(§) = crv/—oesch(v/—pf) exp(i (c;»,t - %(,u,cg +c3) /ﬂ(x)dx + C5> + /fy(x)dx), (27)
while, if B # 0, B2 > A% and u < 0, then we obtain
) = erv/Fsecn (v e + &) exp (i (et = gt + ) [Bpde s es) + [a(wpas). (28)

where £ = tanh ™ (%). Similarly, we can find more solitary wave solutions of Eq. (1) using (17), (19), (22), (24) and
(26) but we omitted them for simplicity.
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3.2. Example 2. The higher-order nonlinear Schrodinger equation with variable coefficients

In order to obtain the exact solutions of Eq. (2), we assume that the solution of Eq. (2) has the same form (8).
Substituting (8) into (2) and separating the real and imaginary parts, we obtain

Vg = (=200 — 0y )1 (x) + (Um — 3vt(9t)2 — 3v9t9tt)043(x) + ’UQUt(3Oé4(J)) + 2a5(x)) + vl (x), (29)
and
v, = (Utt — U(Qt)2)041(1') + <3Utt9t + 3y — v(0,)° + vﬁttt)ag(x) + v (z) + v*0au(z) . (30)

Balancing vy and v2?v; in Eq. (29), we have M = 1. In order to search for explicit solutions, we deduce that
Egs. (29) and (30) have the same formal solutions (11) and (12). Consequently, we have the following cases:

Case 1.
ap(z) =0, ay(z)=0, by(z)=crel T@  pay=c,,

q(z) = —cy {203/041(:5) dz + (pc3 + 3¢3) /Otg(x) dx] + e,

h(z) = f(ucg + cg) /ozl(x)d:z: — 03(3uc§ + cg) /ag(x)dx +es, flr)=0, glx)=c3, ai(z)=ai(x),

043(31‘) = 043(.2?), 044(33) = 044(1‘) s Oég(l‘) = —63044(33) _ 20/1’662% [al (.’L‘) + 363a3(x)]e—2fF(x)d:c ,
_ ;3 _ 3:“’63 -2 [ I'(z)dx _
05(z) = Groa(a) ~ T a(x)e . I()=1I(a). (31)

In this case, we have the exact solution

@) = s |o |1 |l segn (1) (Aexp(if\/m) Bexp(ig\/m))Q

o Aexp(i&y/Tulsgn (1)) + Bexp(—i&y/Julsgn (1) )
X exp(i <03t — (e + c3) /al(x)dx — c3(3ucs + c3) /ag(x)dx + 05) —&-/F(x)dx) (32)
wher
ege_ CQ{t - [QCg/al(as)dx + (pc3 +3c3) /ag(x) dx} } + ¢4 (33)
Case 2.

ao(x) =0, ay(x)=crel T b(@)=0, px)=cs,
q(x) = —c2 [203/0[1(5(1) dz + (—2uc3 + 3¢3) /ag(x) dx] +cy,
d

W) = (2uck — &) / ar(2)dae + e (6uc — 2) / as(@)dz e, f@)=0, ga)=cs, o(z)=m(z),

as(x) = as(a),  au(e) = asla),  asle) = —csau(a) - Q(f[al(x) | Beyag(a)e2d @
as(z) = _73044(36) _ i?ag(x)e—” r@ds p(z) = I(a). (34)
In this case, we have the exact solution
©) = ten TGy LSV ) ~ Bewp(ieTiloen )
Aexp(i¢y/Tulsen () + Bexp(—i¢y/ulsen (1))
X exp(i <63t+ (2pc3 — c3) /al(x) dx + c3(6pc; — c3) /ag(x) dz +c5) +/F(m)dx), (35)

where

£E= cQ{t— [203/041(:8)d:c—|— (—2pc3 + 3¢3) /ag(as)dx} } +e4. (36)
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ap(z) =0, ay(z)=cre/ 7@ p(2)=ci0 gef F@de = pla) = e,
1
q(ﬂ?) = 562 |:—403/041(.%')d$ —+ (/-lcg — 6c§) /0&3(.1‘)d$:| +cq,

h(z) = %(uc% —2c3) /ozl(x)da: + 563 (3ucs — 2c3) /Oég(l‘)d]) +e5, f(r)=0, gx)=c3, oar(z)=ai(x),
2

ag(z) = as(x), () =as(z), ao(z)=—csay(x)— ;—C%[al(x) + 3cgas(x)] e 2 F@)dw
a5 (z) = ’73044(.@) _ iz%ag(x)ezf r@dr  pip) = Pla). (37)
In this case, we have the exact solution
Aexp(i&y/|pulsen(p)) — Bexp(—i&+/|p|sen ()
u(§) = 1§ iv/|plsgn(p) ( ) ( : )
AeXP<1§\/ Iulsgn(u)) + BeXp(—lﬁx/ \ulsgn(u))
o] s () AeXp(i«S\/MSgn(u)) - BGXP(—iE\/|M|SgH(M))
o i\ Aexp(icy/Tulsen(n)) + Bexp(—i¢y/Tulsen(u) )
X exp(i (c;;t + %(ucg — 2c3) /al(m)dx + %c;; (3ucs — 2¢3) /ag(m)dx + 05) + / I'(z) dgc>7 (38)
where
&= cz{t - % {403 / o (z)dz + (pc3 — 6¢3) / Oég(l’)dl’:| } +eq. (39)

In particular, we deduce from (32) that the solitary wave solutions of Eq. (2) will be given as follows:
If B=0, A#0and u <0, then we obtain

u(€) = c1v/—ocsch(v/—p)
X exp<i <03t — (pcs +c3) /al(x)dx —c3(3uc3 + c3) /ag(z)dx + 05) + /F(:c)dx), (40)
while, if B # 0, B2 > A? and p < 0, then we obtain
u(€) = erv/asech(y/ =g + &)
X exp(i <03t — (pcs +c3) / o1 (z)dz — e3(3pc3 + c3) /OLg(:C)d(L’ + 05) +/F(x)dx), (41)

where & = tanh™'(4). Similarly, we can find more solitary wave solutions of Eq. (2) using (35) and (38) but we

omitted them for simplicity.

Remark 3: All solutions of this article have been checked with the Maple by putting them back into the original
Egs. (1) and (2).

4, Conclusions parameters are taken as special values, the solitary wave
solutions are derived from the hyperbolic function solu-

. . - G’ tions. This work shows that the generalized extended
In this article, the generalized extended (5)— ( ; &

_expansion method has been proposed to find out ex- 5)—expansion method is direct, effective and can be

act solutions of NLSEs. As applications of the proposed ~ applied to many other NLSEs in mathematical physics.
method, some new traveling wave solutions of the nonlin-

ear Schrodinger equation with the gain and variable co-

efficients (1) and the higher-order nonlinear Schrédinger Acknowledgments

equation with variable coeflicients (2) are successfully ob-
tained. These solutions include hyperbolic function so-
lutions and trigonometric function solutions. When the
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