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The role of anisotropic rotation for electron spin resonance lineshape and nuclear magnetic relaxation
dispersion pro�les for paramagnetic molecules with electron spin quantum number S ≥ 1 is discussed. The ESR
spectra and nuclear magnetic relaxation dispersion pro�les are calculated by means of an approach based on the
stochastic Liouville equation and referred to in the literature as �Swedish slow motion theory�. This description is
valid for arbitrary motional conditions and interaction strengths. Molecular tumbling in�uences the ESR spectra
by modulating zero �eld splitting interactions. The nuclear spin relaxation is a�ected by the rotational motion
in a twofold way: via the electron spin dynamics and as a direct source of modulations of the electron-nuclear
dipole�dipole interactions. For coinciding principal axes systems of the permanent (residual, static) zero �eld
splitting and rotational tensors the ESR lineshape is not a�ected by rotational anisotropy. Rotational anisotropy
is important for nuclear relaxation as it is in�uenced by molecular rotation not only via the electron spin
dynamics, but also directly by modulations of the electron spin�nuclear spin dipole�dipole interaction (when the
dipole�dipole and zero �eld splitting frames do not coincide). The anisotropy e�ects depend strongly on the
relative orientation of the dipole�dipole and permanent zero �eld splitting axes. Nevertheless, a di�erent scenario
is also possible. When the di�usion axis coincides with the dipole�dipole axis (but not with the principal axis
system of the permanent zero �eld splitting), the nuclear spin relaxation as well as the ESR lineshape, become
sensitive to the rotational anisotropy. The possible dependence of the ESR lineshape and nuclear spin relaxation
on the rotational anisotropy should be carefully considered when attempting a joint analysis of ESR and nuclear
magnetic relaxation dispersion results for paramagnetic molecules.

PACS: 87.64.kj, 87.64.kh, 75.10.Dg, 76.60.Es

1. Introduction

Nuclear magnetic resonance (NMR) and electron spin
resonance (ESR) are experimental methods well estab-
lished in molecular science. Careful analysis of reso-
nance spectra can provide detailed information about
mechanisms of molecular motion, spin- and molecular
interactions provided by appropriate theoretical mod-
els are available. For paramagnetic systems (molecules)
NMR and ESR serve as complementary techniques.
Paramagnetic systems are materials with positive mag-
netic susceptibility associated with unpaired electrons.
Biomolecules containing transition metal ions (for in-
stance paramagnetic metalloproteins) are a good exam-
ple of such systems. Other examples are transition metal
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complexes used as contrast agents in NMR imaging or
radicals. Paramagnetic systems of interest for this work
contain protons (or other nuclei of spin quantum num-
ber 1/2, such as 19F or 13C) or are dissolved in proton
containing solvents.

In the case of transition metal ions, a hierarchy of inter-
actions is relevant as far as the electron and nuclear spin
dynamics is concerned. Due to strong zero �eld split-
ting (ZFS) interactions present when the electron spin
quantum number S ≥ 1, the ESR spectra are not af-
fected by the presence of neighboring nuclei. In turn, the
electron spin dynamics has a profound e�ect on the nu-
clear spin relaxation due to the large magnetic moment
of the electron spin (about 650 times larger than the one
of protons). A key example is here the e�ect of paramag-
netic relaxation enhancement (PRE) for transition metal
complexes (contrast agents) in solution (typically water)
[1, 2]. The PRE e�ect can be monitored by measuring
the 1H spin�lattice relaxation time (rate) of the solvent
protons versus magnetic �eld (frequency). The frequency
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dependence of the spin�lattice relaxation rate is referred
to as the nuclear magnetic relaxation dispersion (NMRD)
pro�le [1, 2]. It can now be routinely measured due to the
availability of commercial fast �eld cycling spectrometers
[3] from, e.g., STELAR.

When attempting a quantitative description of the
PRE e�ects including ZFS one faces serious theoretical
di�culties. Classical relaxation formulae are derived by
applying Red�eld relaxation theory [4�6] which is based
on second order perturbation theory. This fact causes
serious limitations on the interaction strengths and the
time scale of the molecular motion that can be studied.
The Red�eld relaxation theory requires that ω′τc ≪ 1
[4�6], where ω′ is the amplitude (in angular frequency
units) of the interaction causing the relaxation while τc
is a characteristic time constant (correlation time) de-
scribing the time scale of stochastic �uctuations of this
interaction. In most cases this condition is rarely ful�lled
for the electron spin due to strong ZFS interactions and
relatively long rotational correlation times. In fact, the
electron spin relaxation can be described by means of per-
turbation theory only for small molecules in non-viscous
solvents. Such systems are of limited interest from the
perspective of contemporary applications. Therefore a
general theory of the nuclear spin relaxation (PRE), valid
beyond the perturbation limit, has been proposed. This
treatment is referred in the literature as �Swedish slow
motion theory� [6, 7]. Typically it is used under sev-
eral simplifying assumptions: the molecular tumbling is
treated as isotropic, it is assumed that the ZFS interac-
tion is of axial symmetry and the principal axis of the
permanent (static) part of the ZFS tensor coincides with
the electron spin�nuclear spin dipole�dipole (DD) axis.
It is useful to distinguish a contribution to the ZFS that
remains after long-time averaging. Such a contribution
is called the permanent ZFS. It is analogous to residual
dipole�dipole interactions for anisotropic systems.

The e�ects of ZFS rhombicity and non-coinciding axes
have been discussed [7, 9�11]. It has been found that the
rhombicity of the permanent ZFS has di�erent e�ects for
integer and half-integer spins due to the Kramers degen-
eracy for the second case.

Generally, the nuclear spin�lattice relaxation rate
(PRE) is reduced in the low �eld range and this e�ect
is more pronounced for integer spins. However, it also
strongly depends on the motional regime (the time scale
of the rotational motion). For non-coinciding principal
axis systems of the permanent ZFS and the DD axis the
nuclear spin�lattice relaxation rate is also reduced in the
low �eld range.

Predictions of the slow motion theory have been com-
pared with other treatments of PRE going beyond the
range of validity of the perturbation approach [12]. The
result of this comparison con�rms the validity of the
theoretical treatment discussed here. It has also been
extended to include relative translational motion of the
electron and nuclear spin (outer-sphere PRE) [13]. Re-
cently, the slow motion theory has been adopted to

ESR lineshape analysis [14] and used for a joint analysis
of multifrequency ESR spectra and NMRD for selected
Gd3+ complexes [14]. The attempt of a joint, consistent
analysis of ESR and NMRD was successful, con�rming
that the simple model of distortional (vibrational) �uc-
tuations of the ZFS tensor (referred to as pseudorota-
tional model [1, 7, 9, 10]) captures essential features of
this motion. The molecular tumbling has been treated
as isotropic.
The issue whether anisotropy of molecular tumbling

can be inferred from ESR lineshapes has been considered
for radicals of electron spin quantum number 1/2 [15, 16].
The NMRD theory for S ≥ 1 has its origin in the treat-
ment of the ESR lineshape of radicals [16�22], based on
the stochastic Liouville equation. In the case of radi-
cals ESR spectra are a�ected by g-tensor anisotropy and
scalar interactions of the unpaired electron with neigh-
boring nuclei, for instance 14N (15N) for nitroxyl radicals.
The sensitivity of ESR spectra for such systems to the
anisotropy of molecular tumbling has been discussed else-
where [15, 16]. The e�ect of anisotropic molecular tum-
bling on the nuclear spin�lattice relaxation for S = 1 has
been discussed in [11]. It has been pointed out that the
rotational anisotropy can in�uence the relaxation pro�les
only when the principal axes of the permanent ZFS and
DD interactions do not coincide.
In this work we explicitly demonstrate the inde-

pendence of the ESR lineshape from the rotational
anisotropy, in the systems under study, and discuss its
in�uence on nuclear spin relaxation for high electron spin
quantum numbers (in analogy to the case of S = 1 [11]).
It is important to keep in mind the sensitivity of NMRD
to the anisotropic tumbling in joint analysis of ESR and
NMRD data [14] (even though the ESR spectra remain
una�ected). In addition we show examples of ESR spec-
tra for S = 3 (as an example of integer spin quantum
numbers) and show the role of ZFS rhombicity; until now
the slow motion theory has been applied to obtain ESR
spectra only for S = 7/2 [14, 22].
The paper is organized as follows. In Sect. 2 the slow

motion theory for NMRD and ESR for S ≥ 1 is out-
lined. Its extension to anisotropic tumbling is described.
In Sect. 3 the e�ect of anisotropic rotation on ESR and
NMRD is discussed, while Sect. 4 contains concluding
remarks.

2. NMRD and ESR beyond

the perturbation limit

As already explained in Introduction the most impor-
tant contribution to relaxation processes in paramagnetic
systems is due to strong anisotropic ZFS interactions
combined with relatively slow molecular tumbling, which
prevents a description of the electron spin dynamics by
means of well established perturbation theories of relax-
ation. This implies the necessity of a much more com-
plex approach based on the stochastic Liouville equation.
This approach has been described in detail in many pa-
pers (for instance [5, 7�14, 22]). Here we elaborate on
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only those aspects of the slow motion treatment which
are essential for clarity of presentation. Since the electron
spin dynamics is independent of the presence of neighbor-
ing nuclei we begin with this issue.
In general, there are two types of interactions relevant

for the electron spin: the Zeeman coupling (including
possible e�ects of g-tensor anisotropy) and ZFS. ZFS in-
teraction can be split into residual (permanent, static)
and �uctuating (transient) parts (in fact, these consider-
ations are valid for any spin interaction):

HZFS(t) = ⟨HZFS(t)⟩+ (HZFS(t)− ⟨HZFS(t)⟩)

= HS
ZFS +HT

ZFS(t). (1)

The permanent part, HS
ZFS, is time independent in a

molecule-�xed frame. However, the principal axis sys-
tem of this interaction (PS) changes its orientation with
respect to the direction of the external magnetic �eld
(the laboratory (L) frame) due to the molecular rota-
tion. The transient part of the ZFS tensor undergoes
stochastic �uctuations due to changes in the internal ge-
ometry of the molecule which are caused by molecular
vibrations, distortions and collisions with surrounding
molecules. Figure 1 shows a schematic picture of an elec-
tron spin�nuclear spin system including the relevant in-
teractions. (PS) and (PT ) denote the principal axes sys-
tems of the static and transient ZFS, while (DR⊥) and
(DR∥) are the principal axes of the di�usion tensor. It is
assumed that (PS) and (DR∥) coincide.

Fig. 1. Schematic view of an electron spin�nuclear spin
systems.

This complex physical mechanism has been described
by a simple model referred to as the pseudorotational
model [5, 7�10, 21]. According to it, the transient ZFS
part also has a principal axis system (PT ) which changes
its orientation with respect to PS (or any other refer-
ence frame �xed in the molecule) following a �pseudoro-
tational� di�usion equation (the free rotation di�usion
equation, in fact) with a characteristic time constant,
τD, referred to as the distortional correlation time. This
is an obvious simpli�cation which has the advantage of
a simple mathematical formulation. Nevertheless, this
simple model captures the essential features of the tran-
sient ZFS dynamics [14]. The ZFS interactions are char-
acterized by axial and rhombic parameters, DS , ES and
DT , ET for the static and transient parts of the tensor,

respectively.

The concept of applying the stochastic Liouville equa-
tion lies in forming an (in principle) in�nite basis set
{|Oi)} constructed from the relevant degrees of free-
dom of the system � in this case distortion (|ABC)),
rotation (|LKM)) and spin (|Σσ)) variables: |Oi) =
|ABC)⊗ |LKM)⊗ |Σσ) [4, 6, 8, 14, 22].
In this paper we shall not go into the details of the

mathematical formulation, they are described elsewhere
[5, 7�14, 23]. It is important to note that the ESR line-
shape function L(ωS − ω) at the frequency ω (ωS is
the main electron spin (or the Larmor) frequency de-
�ned as ωS = γSB0, where B0 is the external mag-
netic �eld while γS is the electron gyromagnetic ratio)
is determined by one element (corresponding to the state
|ABC)|LKM)|Σσ) = |000)|000)|1 − 1)) of an inverted
matrix [M ]−1 [5, 7�10, 14, 22]. The matrix is a represen-
tation of all the spin interactions (the Zeeman coupling
and ZFS, static and transient), as well as the rotational
and distortional motions in the basis {|Oi)} obtained by
means of the Wigner�Eckart theorem [23]. In the origi-
nal formulation of the theory the molecular tumbling is
treated as isotropic. This implies that the rotational ma-
trix elements of the matrices [M ] are given as

(A′B′C ′|(L′K ′M ′| (Σ′σ′
∣∣∣ ˆ̂LR

∣∣∣ABC)|LKM) |Σσ)

= δAA′δBB′δCC′δLL′δKK′δMM ′δΣΣ ′δσσ′

× iDRL(L+ 1) (2)

with
ˆ̂
LR = − iDR∇2

ΩPSL
, where DR is the rotational

di�usion coe�cient related to the rotational correlation
time, τR, via τR = 1/(6DR). In the present paper we
shall consider anisotropic rotational motion for axially
symmetric molecules. Then Eq. (2) has to be replaced
by

(A′B′C ′|(L′K ′M ′| (Σ′σ′
∣∣∣ ˆ̂LR

∣∣∣ABC)|LKM) |Σσ)

= δAA′δBB′δCC′δLL′δKK′δMM ′δΣΣ ′δσσ′

× i
[
DR⊥L(L+ 1) +

(
DR∥ −DR⊥

)
M2

]
, (3)

where DR⊥ and DR∥ are the perpendicular and par-
allel components of the rotational di�usion tensor re-
lated to the corresponding rotational correlation times
τR⊥ = 1/(6DR⊥) and τR∥ = 1/(6DR∥).

The calculations of the nuclear (1H) spin relaxation are
based on a slightly modi�ed [M ] matrix; the frequency ω
is replaced by the proton Larmor frequency ωl. The nu-
clear spin�electron spin dipole�dipole coupling, which is
the origin of the 1H spin relaxation, is modulated, in gen-
eral, by rotation, the electron spin dynamics and chem-
ical exchange. In the present work we neglect the last
e�ect. The rotational motion plays a double role for the
nuclear spin relaxation. It does not only a�ect the elec-
tron spin dynamics but it also directly contributes to
the modulations of the dipole�dipole interaction. The
form of the DD Hamiltonian determines the elements of
[M ]−1 that describe the nuclear spin�lattice relaxation;
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it is given by a 3×3 block of the inverted matrix [2, 8�10,
14, 22]. Besides the ZFS parameters and the rotational
and distortional correlation times the nuclear spin relax-
ation depends on the inter-spin distance, I − S (if the
exchange processes are neglected), but it plays only the
role of a scaling factor. This statement implicitly assumes
that the I − S DD axis coincides with the principal axis
of the static ZFS. If this is not the case the relative ori-
entation of the two frames has to be introduced into the
description of the nuclear spin relaxation [7, 9�11]. In the
next section we discuss the e�ects of anisotropic rotation
on ESR spectra and 1H NMRD pro�les in combination
with non-coinciding DD and static ZFS tensors in the
context of a uni�ed analysis of both kinds of data.

3. ESR and NMRD for anisotropic rotation

The e�ects of the static ZFS interaction modulated by
the rotational dynamics are most pronounced for low-
-frequency ESR spectra. We begin the discussion with
X-band spectra assuming a magnetic �eld of 0.34 T with
axially symmetric ZFS coupling for S = 3 (for instance
Mn3+ ions). It has generally been assumed that the prin-
cipal axes systems of the di�usion and static ZFS tensors
coincide (as shown in Fig. 1). In Fig. 2a ESR spectra
for isotropic rotation with τR = 2 ns have been com-
pared with the case of τR⊥ = 2 ns, τR∥ = 200 ps and
τR⊥ = 200 ps, τR∥ = 2 ns. One does not see a di�er-
ence between the �rst two cases. As explained the ESR
spectra are determined by static and transient ZFS inter-
actions which are mediated by the rotational dynamics.
(The transformation between the principal axis system of
the static ZFS and the laboratory frame arises from the
rotational motion. Rotational dynamics also a�ects the
transient ZFS in the transition from the (PT ) frame to the
laboratory frame.) However, given that (DR∥) and (PS)
coincide, rotation around the (DR∥) axis cannot a�ect
the ZFS interactions, nor, in consequence, the ESR spec-
tra. As expected, for faster molecular tumbling around
the perpendicular di�usion axis, (DR⊥), the structure of
the spectrum due to the static ZFS is less pronounced as
a result of partial averaging.
Rhombic symmetry of the static ZFS is also of impor-

tance for the ESR lineshape. The ESR spectra for the ax-
ial and rhombic (assuming the largest possible rhombic-
ity, ES/DS = 1/3) cases have been compared in Fig. 2b.
Here, too, a faster molecular tumbling around (DR⊥) re-
duces the static ZFS structure. The same conclusions
are relevant for the case of S = 7/2 (for instance Gd3+)
shown in Fig. 3a,b. Since the spectra for τR = 2 ns and
for τR⊥ = 2 ns, τR∥ = 200 ps are indistinguishable, we do
not show in Fig. 3a the �rst case. It is of some interest to
observe the rhombicity e�ects directly for the absorption
spectra as shown in the inset of Fig. 3b.
As explained in Introduction the challenge of combined

ESR and NMR studies is a joint analysis of multi fre-
quency ESR spectra and NMRD pro�les. Taking into
account the double role of the rotational motion as a di-
rect source of modulations of the nuclear spin�electron

Fig. 2. ESR spectra (S = 7/2) at B0 = 0.34 T, DS =
0.035 cm−1, DT = 0.02 cm−1, τD = 20 ps; (a) ES = 0,
τR = 2 ns � black solid line; ES = 0, τR⊥ = 2 ns,
τR∥ = 200 ps � red dotted line; τR = 200 ps � green
dashed line; (b) ES = DS/3, τR = 2 ns � black solid
line; ES = 0, τR = 2 ns � black dashed line; ES =
DS/3, τR = 200 ps � green dashed line.

Fig. 3. ESR spectra (S = 7/2) at B0 = 0.34 T, DS =
0.035 cm−1, DT = 0.02 cm−1, τD = 20 ps; (a) ES = 0,
τR = 2 ns � black solid line; ES = 0, τR = 200 ps
� green dashed line; (b) ES = DS/3, τR = 2 ns �
black solid line; ES = 0, τR = 2 ns � black dashed line;
ES = DS/3, τR = 200 ps � green dashed line. Inset �
absorption spectra for ES = DS/3, τR = 2 ns � black
solid line and ES = 0, τR = 2 ns � black dashed line.
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spin DD coupling and its indirect e�ect on the DD inter-
action, one expects that the anisotropic motion consider-
ably in�uences NMRD pro�les through the direct e�ect.
As noted in Introduction this has already been discussed
for the case of S = 1 in [6] pointing out that the rota-
tional anisotropy becomes relevant when the (DD) and
(DR∥) axes do not coincide (angles θ, φ in Fig. 1). In
analogy to the ZFS, the dipole�dipole interaction cannot
be a�ected by the motion around an axis coinciding with
the DD axis.
In Fig. 4a�d the e�ects of anisotropic rotation on

NMRD for di�erent orientations of the (DD) and (DR∥)
axes is shown. If τR∥ > τR⊥ the slow molecular tum-
bling around the parallel axis does not, in any event, lead
to signi�cant e�ects. In the opposite case, τR∥ < τR⊥,
the faster motion reduces the nuclear spin relaxation for
lower magnetic �elds to a level depending on the angle
θ between the (DD) and (DR∥) axes. The chosen angle
θ = 54.74◦ is referred to as �magic angle� for the DD
interaction, because at this angle the secular (diagonal
part) of DD disappears.

Fig. 4. 1H spin�lattice NMRD pro�les for DS =
0.035 cm−1, DT = 0.02 cm−1, τD = 20 ps, rIS =
300 pm; (a) θ = 30◦, (b) θ = 45◦, (c) θ = 54.74◦, (d)
θ = 90◦ (φ = 0), τR = 2 ns � black line; τR⊥ = 2 ns,
τR∥ = 200 ps � red dashed line; τR⊥ = 200 ps,
τR∥ = 2 ns � blue dashed-dotted line, τR = 200 ps �
green dotted line. Relaxivity is referred to as relaxation
for a solvent of 1 mol concentration.

We wish to stress that the scenario described in this pa-
per where rotational anisotropy does not a�ect the ESR
spectra whereas it can a�ect NMRD pro�les is only one
possibility. One can imagine a situation when the (DD)
and (DR∥) axes coincide, whereas (PS) and (DR∥) do not
(their relative orientation is described by θ, φ). When
this situation obtains, the ZFS interactions become sen-
sitive to the motional anisotropy (they will be a�ected by
rotation around the perpendicular as well as parallel axes
because now they will deviate from the principal axes sys-
tem of the static ZFS) and, in this way, will in�uence the
ESR lineshape. In addition, the nuclear spin relaxation

will become a�ected by the di�erent electron spin dy-
namics. At the same time the motional anisotropy will
not be directly sensed by the DD interaction anymore.
Joint analysis of ESR and NMRD data does not only

increase the validity of the dynamical and interaction pa-
rameters obtained via such analysis, it also provides sup-
port for the motional models used in the analysis. Since
ESR spectra and NMRD data can be a�ected to a di�er-
ent extent by the rotational anisotropy, one should take
this account when looking for the best agreement with
ESR and NMRD for paramagnetic molecules.

4. Conclusions

The in�uence of anisotropic molecular tumbling on
ESR lineshape and NMRD pro�les for paramagnetic
molecules with electron spin quantum number S ≥ 1
has been discussed. ESR spectra and NMRD pro�les
have been calculated by means of �Swedish slow motion
theory� based on the stochastic Liouville equation and
therefore valid for arbitrary motional conditions and in-
teraction strengths. Examples of ESR spectra for S = 3
and S = 7/2 for axial and rhombic ZFS are shown. When
coincident axes of the static ZFS and rotational di�usion
ESR spectra are assumed, it is observed that the ESR
spectra are not sensitive to the anisotropy of the molec-
ular tumbling. At the same time NMRD pro�les are in-
�uenced by this e�ect (if the DD and di�usion axes do
not coincide). Under di�erent circumstances, de�ned by
the relevant stereochemistry, it is possible that both the
ESR lineshape and NMRD pro�les can become sensitive
to the rotational anisotropy. Since ESR and NMR are
well established complementary techniques in molecular
science, this fact should be kept in mind when evaluat-
ing the consistency of motional models applied to joint
analysis of ESR lineshapes and NMRD pro�les.
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