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Real time quantum dynamics of the spontaneous translational symmetry breakage due to light excitation in
the early stage of photo-induced structural phase transitions is reviewed under the guide of the Toyozawa theory,
which is in exact compliance with the conservation law of the total momentum. At the Franck–Condon state, an
electronic excitation just created by a visible photon is in a plane wave state, extended all over the crystal. While,
after the lattice relaxation having been completed, it is localized as a new excitation. So, is there the shrinkage
of the excitation wave function? No! The wave function never shrinks, but only the spatial (or inter lattice-site)
quantum coherence (interference) of the excitation disappears, as the lattice relaxation proceeds. This is the
breakage of translational symmetry.

PACS: 78.90.+t

1. Adiabatic nature of exciton self-localization
and PISPT

As shown by Toyozawa [1], the photo-induced struc-
tural phase transition (PISPT) phenomenon is closely
related to the self-localization of an exciton in an insu-
lating crystal. It can be simply described by the following
model Hamiltonian (≡ HF), ~ = 1,

HF = −TF
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Here, TF (> 0) is the resonant transfer (energy) of an
exciton from a lattice site ` to its nearest neighbouring
sites `′ in a 3D simple cubic crystal, and F+

` is the cre-
ation operator of this exciton at the lattice site `. It
is an intra-atomic (Frenkel, or intra-molecular) exciton,
well localized within each lattice site.

As schematically shown in Fig. 1, Eg denotes the en-
ergy gap of this insulator, while S is the dimension-
less coupling constant of this exciton to a site localized
phonon, of which energy and dimensionless coordinate
are ω0 and Q`, respectively. The kinetic energy of this
phonon will be neglected, because of the adiabatic ap-
proximation. In ordinary insulators, Eg, 6TF and ω0S
are quantities of the order of eV, while ω0 is 10 meV
or so.

The eigenstate (≡ |Ψ(Q`)〉, 〈Ψ |Ψ〉 = 1) of this HF will
be given as a function of Q` and unknown at present,
but we determine it under the condition that the total
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Fig. 1. Schematic nature of exciton self-localization
and the start of the PISPT. The luminescent case (left),
and the non-luminescent, PISPT case (right). The self-
-localization formally starts from the exciton band cen-
ter, whose energy is 6TF higher than the exciton band
edge with the energy Eg.

number of the exciton is just one,
∑

` F+
` F` = 1. After

formally taking the average of HF with respect to this
unknown |Ψ〉, we can apply the Hellmann–Feynman the-
orem to Eq. (1), and can get as,

∂〈Ψ |HF|Ψ〉
∂Q`

= 0, 〈Ψ |F+
` F`|Ψ〉 =

Q`

S
. (2)

Substituting this Eq. (2) into the original Eq. (1), we also
get

〈HF〉 = (Eg + 6TF)− TF
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where Ψ is omitted in the averages 〈. . .〉, for simplic-
ity. We should note that this Eq. (3) holds only at local
minimum (or extremum) points in the multidimensional
coordinate space spanned by Q`, since it is obtained by
using Eq. (2).
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When the exciton–phonon coupling is sufficiently
strong, 6T < ω0S

2/2, according to Shinozuka and Toy-
ozawa [2], we have only two types of minima in the adi-
abatic potential energy surface of the excited state, as
schematically shown in Fig. 1. One is the global min-
imum with 〈F+

` F`〉 = δl,0, being localized, say, at the
origin ` = 0 with a large lattice displacement, Q0 = S.
Its electronic energy ((Eg + 6TF) − ω0S

2), given by the
second term of Eq. (1), formally starts from the exciton
band center (Eg+6TF), but goes below the exciton band,
as a local lattice displacement Q0 is self-induced (0 → S).
It is called self-trapped (or self-localized) exciton (STE)
state. The second local minimum is 〈F+

` F`〉 = 1/N ,
where N denotes the total number of the lattice sites
in the crystal. This is the plane-wave state of the exciton
whose wave vector (≡ k) is zero, k = 0, and its energy
is just the energy gap Eg. The final state of the Franck–
Condon excitation by light is this plane wave state, being
the lowest one within the exciton band. While, after the
lattice relaxation, as schematically shown by the dashed
arrow in Fig. 1, the whole system reaches the STE state.
We should also note that, at this largely displaced lattice
configuration, even the elastic energy of the ground state,
as well as that of the STE, increases up to ω0S

2/2, since
the lattice distortion, (the last term of Eq. (1)) is com-
mon to all states. If the total energy of this STE state is
above the ground state one at this lattice configuration,

(Eg + 6TF)− ω0S
2

2
>

ω0S
2

2
, (4)

this STE state finally disappears with a luminescence,
whose energy is a little smaller that the exciting one, as
shown in the left part of Fig. 1. This is the ordinary
situation widely realized in the luminescent insulators.

As shown in the right part of Fig. 1, however, if the
exciton–phonon coupling is so large as to relax down even
lower than the ground state at this largely displaced lat-
tice configuration,

0 < (Eg + 6TF)− ω0S
2

2
<

ω0S
2

2
, (5)

the system becomes non-luminescent, and the STE re-
mains forever within the adiabatic approximation at ab-
solute zero temperature. This is nothing but the start of
the PISPT [1].

2. Dynamics of self-localization

Let us now see the non-adiabatic quantum dynamics
of self-localization, including the kinetic energy term of
the phonon in Eq. (1). The wavelength of visible light
is quite longer than the lattice constant of the crystal.
This means that the wave vector of the visible photon
is almost zero, because it is extremely smaller than the
wave vectors of an exciton in the first Brillouin zone of
this crystal. Consequently, the initial Franck–Condon
type excited state (≡ |FC〉) is the Bloch wave whose to-
tal wave vector (≡ k) is almost zero, having the same
translational symmetry as that of the crystal. It is given

by

|FC〉 = N− 1
2

∑

`

e− ik·lF+
` |0〉, (6)

|0〉 ≡ exciton–phonon vacuum. Thus, the probability
density of the exciton at each lattice site of the crystal is
inversely proportional to N (volume of the crystal),

〈FC|F+
` F`|FC〉 = 1/N, (7)

being normalized to be one within the whole crystal.

Meanwhile, the self-localization mentioned above, is
often misunderstood to be a sudden shrinkage of the ex-
citation energy or the excitation wave function from the
infinitely extended Bloch state |FC〉 to a localized one
within a lattice site, say, localized one at the origin of
the crystal. This picture of sudden shrinkage, however, is
completely wrong. Before, during and even after the self-
-localization, the wave function never shrinks, as shown
by Cho and Toyozawa [3].

They have proposed the following simple but Bloch
type self-localized state (≡ |STE〉),

|STE〉 = N− 1
2

∑

`

e− ik·`−S(F+
` F`)

∂
∂Q` F+

` |0〉, k → 0.

(8)
In this Bloch type STE state, the self-localization oc-
curs everywhere with an equal probability. Its probabil-
ity density at each lattice site of the crystal is unchanged
from Eq. (7), and is still inversely proportional to N ,

〈STE|F+
` F`|STE〉 = 1/N. (9)

However, as described in Eq. (8), each self-localized state
at lattice site ` induces a large (S À 1) lattice distortion
only in this site by the following displacement operator
for phonons:

e−S(F+
` F`)

∂
∂Q` . (10)

This phonon displacement will appear and disappear ac-
cording to the presence or the absence of exciton, since
it is just proportional to F+

` F`. In other words, once this
large local lattice distortion occurs, the exciton has heav-
ily dressed in phonons. Hence, even if it tries to move
only to a neighboring lattice site from its original one, it
has to annihilate all these phonons (larger distortion) and
has to make them again at the neighboring site, newly.

This probability can be estimated by the inter lattice-
-site coherence (≡ C(∆),∆ 6= 0) of exciton, which is
given as,

C(∆) =
∑

`

〈STE|F+
`+∆F`|STE〉. (11)

It becomes almost zero when the exciton–photon cou-
pling is very strong

C(∆) → 0 (= 〈0|e−S ∂
∂Q`+∆ |0〉〈0|e−S ∂

∂Q` |0〉, S À 1).
(12)

While, at the initial Franck–Condon state, this inter
lattice-site coherence (≡ CFC(∆),∆ 6= 0) is given as
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CFC(∆) ≡
∑

`

〈FC|F`′+∆ + F`|FC〉, (13)

and it remains finite, CFC(∆) = 1. Thus, we can say,
the spatial, or the inter-site quantum coherence of exci-
ton becomes zero when the exciton–phonon coupling is
very strong, although it was finite at the initial Franck–
Condon state |FC〉.

This is nothing but the spontaneous translational sym-
metry breaking, and finally makes a classical and local
picture for exciton valid. This relaxation with the large
lattice distortion from the Bloch wave to the self-localized

one can occur spontaneously even at absolute zero tem-
perature.
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