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The aim of the paper is to present an example of analysis of exchange rate behavior with use of tools, built

in GRETL econometric package, which have been developed by researchers often with background in physics or
similar fields, but some (such as tests of integration and cointegration) are less known to physical audience. The
series of interest is a bilateral USDPLN exchange rate; including the corresponding stock indices as additional
variables can improve quality of a model even in period of crisis.
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1. Introduction

In this paper we apply tools built in a GRETL econo-
metric package (widely used in teaching and research)∗ to
closing daily values of bilateral USDPLN exchange rate
and returns. The data set covers ten years (2000–2010),
including period of the financial crisis, which makes mod-
eling more difficult. Several methods, well known and
established in time series econometrics, have been de-
veloped by researchers with background in physics or
science. Some tools used here are perhaps less known
to non-econometric audience, hence we describe them
in greater detail than is perhaps necessary for econo-
metricians. We note also deficiencies of some tests and
methods, in hope that interested readers of different
background might suggest some improvements or better
choice of algorithms. All comments and suggestions of
this kind are welcome†.

This is not a detailed overview of financial economet-
rics, rather an application of selected methods to the fi-
nancial time series of interest. The empirical example
has been suggested by a research by Bauwens, Rime and
Succarat [1] on bilateral exchange rates of the Norwegian
crona. They managed to improve quality of their model
by using stock exchange indices of respective countries
as additional explanatory variables for the bilateral ex-
change rate. We follow their example using SP500 and
WIG20 indices returns to explain the USDPLN daily re-
turns (see an application in [3, 4] for shorter data pe-
riod). To check whether there is a stable dynamic eco-
nomic equilibrium for exchange rate and corresponding
stock indices, cointegration analysis of the series is per-
formed. We compute the fractional integration param-
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∗ GRETL is a free open-source cross-platform package (see
gretl.sourceforge.net, and also www.kufel.torun.pl for a Polish
translation of the software).
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eter and the Hurst exponent, using algorithms built in
GRETL, to check properties of the series.

Let {yt}, t = 1, 2, . . . , N denote a series of closing val-
ues of exchange rate or a stock index. We use a typical
definition of logarithmic returns:

zt = 100 ∗ (ln yt − ln yt−1) (1)
where yt – closing values of an instrument. Exchange
rates and stock indices have slowly decreasing autocorre-
lation function (“long memory” behavior shows in their
Hurst exponent and fractional integration parameter es-
timates). The returns series shows changing volatility
(volatility clustering), excess kurtosis, asymmetry of the
probability density, but is stationary in mean, hence we
can apply an ARMA or pure autoregressive model with
finite number of lags to the mean. However to model
the volatility clustering, a second equation (according to
ARCH and GARCH models, introduced respectively by
Engle and Bollerslev), is needed.

The tools applied in such a research often stem origi-
nally from technical sciences or physics: the Hurst expo-
nent, from hydrological study [5] of 1950’s; the ARMA
models, from Box and Jenkins [6] fundamental mono-
graph collecting methods of time series analysis devel-
oped by engineers. In this paper we remind definitions
of stationary and integrated time series, tests for non-
stationarity (ADF and KPSS) and cointegration, check
for properties typical for financial data series, and apply
measures such as fractional integration parameter and
Hurst exponent.

2. Nonstationarity, integration and cointegration

Operational definition of stationarity, used in economic
time series analysis, is the following. A series is said to
be stationary (see e.g. [7], p. 12) if all three conditions
hold:
1. Expected value of a series, E[Xt] is constant, indepen-
dent of time;
2. Variance D2(Xt) is constant and finite, independent
of time;
3. Covariance Cov(Xt, Xs) depends only on |t− s|.

Stationary process is characterized in the time domain
by (see e.g. [8]):
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1. Its mean: x̄ = 1
N

∑N
t=1 xt

2. Covariance: Cτ = [1/(N−τ)]
∑N−τ

t=1 (xt− x̄)(xt−τ− x̄)
3. Autocorrelation function: Rτ = Cτ

C0
= ρ̂τ

and in frequency domain by:
4. Periodogram: I(ω) = 1

2π

∑n
τ=−n Cτ cos ωτ

5. Spectral density function: f(ωj) = 1
π

∑m
τ=0

λm,τCτ cosωjτ where ωj = 2πj/N denote the Fourier
frequencies (see [7], p. 331); N – number of observations;
λm,τ are appropriate weights.

Most of economic and financial time series are non-
stationary. We check this with use of simplest nonsta-
tionarity tests — an Augmented Dickey-Fuller test, in-
troduced in [9]. The hypotheses are: H0: yt is nonsta-
tionary, vs. H1: yt is stationary. The test is based on
a regression:

∆yt = µ + δyt−1 +
k∑

j=1

γj∆yt−j + εt (2)

where parameter δ = ρ−1 corresponds to an autoregres-
sion parameter for a process yt: if δ = 0, then ρ = 1 and
we have a random walk (with drift), if δ < 0, then ρ < 1
and the process is stationary. The regression is estimated
with use of the OLS method. The ADF test statistics is
defined as ADF = δ̂/sδ̂, where δ̂ denotes an OLS esti-
mate of the parameter δ and sδ̂ denotes a standard error
of this estimate. The fraction has skewed asymmetric
distribution, and is to be compared with a proper criti-
cal value; in GRETL the asymptotic values provided by
MacKinnon [10] are used.

The second widely used test, proposed by
Kwiatkowski, Phillips, Schmidt, and Shin [11] (hence
known as the KPSS test), has an opposite set of
hypotheses, namely H0 : yt is stationary, vs. H1 : yt is
nonstationary. The test is based on representation of yt

as:
yt = rt + ξ + εt, rt = rt−1 + ut (3)

where error terms εt, ut are two sets of independent
identically distributed random variables, with zero mean
and with variances equal to σ2

ε and σ2
u, respectively. The

yt series behavior depends on one parameter, which is
variance of ut, σ2

u: if it equals 0, then rt = const and
yt is stationary, if σ2

u > 0, rt is a random walk and yt is
nonstationary. (The test statistics has a very complex
distribution, asymptotic critical values in the original
[11] paper are computed by Monte Carlo simulation,
and are used in econometrics packages)‡. There are
two variants of the test statistics: for a series without
trend (in (3), ξ = 0), and with trend (ξ 6= 0). If the
computed statistics is smaller than a critical value, then
the null of stationarity (or stationarity around a linear
deterministic trend) is rejected.

Behavior of both exchange rates and stock indices is

‡ Both the ADF test and the KPSS test are built in most econo-
metric packages, and also in GRETL.

similar to that of a random walk process: yt = yt−1 + εt.
The random walk process is nonstationary (if y0 = 0,
then yt =

∑t
i=1 εi; it is nonstationary in variance:

D2 (yt) = tD2 (εt) = tσ2
ε); but is an example of an inte-

grated process, as its differences are stationary: ∆yt = εt.
According to Engle and Granger [12] famous article,

a process is integrated, with order of integration d, if it
is nonstationary but its difference is stationary§. Order
of integration is the least integer number of differences
sufficient for obtaining stationarity. Notation yt ∼ I(1)
means that the series is integrated of order 1: yt is non-
stationary, but with stationary first differences. This can
be generalized to fractional integration, where d need not
be an integer number (see [14],[15]).
Cointegration of series yt, x1t, x2t, . . . , xkt ∼ I(1)

means that those series are nonstationary, but there is
a linear combination which is stationary; in more gen-
eral case, cointegration between variables exists if there
is a linear combination with lower order of integration
than the variables themselves (see [12]). Vector of coeffi-
cients of this linear combination is called a cointegrating
vector. According to Granger, a cointegrating vector is
an attractor for a trajectory of an economic system. As
explained by Maddala and Kim [16], if we know from
economic theory that there is a stable dynamic equilib-
rium for a system, then one of cointegrating vectors can
be shown to correspond to this economic relationship.

3. Typical behavior of a financial time series

Empirical distribution of the exchange rate series is
asymmetric and non-normal. Periods of higher volatil-
ity correspond to increased risk of investment. Logarith-
mic returns show so-called volatility clustering, i.e. high
autocorrelation of conditional variance. This is called
an ARCH effect, after Autoregressive Conditional Het-
eroskedasticity model (introduced by Engle [17]; see also
[18]).

Figs. 1 and 2 show respectively daily observations of
USDPLN exchange rate and of its logarithmic returns,
for period since 2000 until 2010. Its logarithmic returns
are stationary in mean (if not in variance), as shown by
the ADF and KPSS test results. Note especially more
volatile behavior of the series during the last financial
crisis (Fig. 2). This suggests that it is worthwile to test
for the ARCH effect.

§ Sir Clive William John Granger (Sept. 4, 1934 – May 27, 2009),
a British economist, and Robert F. Engle (born Nov.10, 1942),
an American economist, were awarded a Sveriges Riksbank Prize
in Economic Sciences in Memory of Alfred Nobel, for their dis-
coveries in analysis of time series data: R.F. Engle “for methods
of analyzing economic time series with time-varying volatility
(ARCH)”, and C.W.J. Granger for “methods of analyzing eco-
nomic time series with common trends (cointegration)”; C.W.J.
Granger had BSc in mathematics and PhD in statistics, R.F.
Engle has B.Sc. and M.Sc. in physics and PhD in economics
(see [13] and also biographical information there).
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Fig. 1. Closing daily values of USDPLN exchange rate.

Fig. 2. Logarithmic returns of USDPLN exchange rate
daily data.

3.1. The Engle test of the ARCH effect

The Engle test of the ARCH effect is based on the
regression of squared residuals on a constant and lagged
squares of residuals:

e2
t = α0 + α1e

2
t−1 + α2e

2
t−2 + . . . + αke2

t−k + ut (4)
where et are error terms of the model in question. We
check whether lagged error squares are jointly significant:
the null H0 : α1 = α2 = ... = αk = 0 for the parameters
of (4) corresponds to lack of the ARCH effect. Under the
null, the test statistic¶ is asymptotically distributed as
χ2(k).

According to the ADF test, the exchange rate series
is nonstationary in mean, but returns are stationary in
mean (if not in variance). The ADF and similar test
discerns only I(1) and I(0) behavior. Hence to describe
a behavior of our series we can use a more subtle tool,
namely fractional integration parameter — a generaliza-
tion of Engle and Granger definition.
Fractional integration parameter (see [14],[15]) is de-

fined as a real number d, such that for a nonstationary
series {yt} increments are stationary: ∆dyt = εt, where
∆dyt are defined with use of the Gamma function as:

¶ If its computed value is greater than a standard χ2 critical values,
the null of no ARCH effect is rejected.

∆d = (1− L)d =
∞∑

k=0

(
d

k

)
(−1)kLk =

=
∞∑

k=0

Γ(k − d)
Γ(−d)Γ(k + 1)

Lk (5)

and L denotes lag operator.
Properties of a series can be classified according to d,

in a following way:
• If d =1, the process is integrated and has infinite

variance,
• If d > 1, the process is also nonstationary, and effects

of external shocks increase in time.
• If 0.5 ≤ d < 1, variance is infinite, hence the process

is also nonstationary, but in long time is mean-reverting.
Effects of shocks last for a long time.
• If 0 < d < 0.5, the process is stationary, mean-

reverting, with finite variance.
• If d = 0, the process is mean-reverting in a short time,

has finite variance, and shock effect diminish quickly.
• If d < 0, the process is antipersistent (mean-averting)

and stationary.
Good overview of applications of fractional integration

to financial data — exchange rates, asset returns, interest
rates, inflation — is given in [19].

3.2. Estimation of fractional integration parameter

In the GRETL package, the Geweke and Porter-Hudak
[20] periodogram regression method and the Whittle
method are used (for the Whittle method, see [21] and
[22], for other methods, see Robinson [23] or [24]).

According to Granger, for a stationary series X and
white noise u , if ∆dXt = ut and ut is stationary with
zero mean and continuous spectral density, fu (ω) > 0,
then:

fx(ω) = |1− exp(iω)|−2dfu(ω).

Phillips [25] shows that for a nonstationary series this
is a limit of periodogram ordinates. For fundamental
frequencies ωs = 2πs/N , where N is number of ob-
servations, s = 1, 2, . . . ,m, a regression log Ix(ωs) =
c−d log |1− exp (iωs) |+ residual is estimated with OLS,
hence this kind of fractional integration parameter esti-
mates are called periodogram regressions.

As the periodogram regression is estimated with OLS
method, we can use the parameter estimates and stan-
dard errors to test hypothesis concerning d, namely,
whether d = 0 for a stationary series, or d = 1 for a non-
stationary series.

As we see, the estimates of a fractional integration pa-
rameter indicate properties of the series. Another mea-
sure, the Hurst exponent, has different origin (see [5]): it
was introduced by the British hydrologist, Harold Edwin
Hurst, during his research on Nile∗∗. But the Hurst ex-

∗∗ According to [26], Hurst (Jan. 1, 1880–Dec. 7, 1978) obtained
a first class honour in physics at Oxford University, for three
years remained at university as a lecturer and researcher, and in
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ponent can be used in a similar way to classify behavior
of a series††:
• 0 < H < 0.5 indicates a series with negative auto-

correlation,
• H > 0.5 indicates a series with positive autocorrela-

tion,
• H = 0.5 indicates a random walk.
This tool was applied to financial time series by Man-

delbrot in numerous papers, but its widespread use
among practitioners is perhaps due to Peters books
[28, 29], translated into several languages. Peters’ al-
gorithm of computing the Hurst exponent goes along
the following way. Let rt denote logarithmic returns,
m(N, t0) =

∑t0+N
t=t0+1 rt/N – mean of a series, then

S(N, t0) =

{
1
N

t0+N∑
t=t0+1

[rt −m(N, t0)]
2

}1/2

is a biased estimator of standard deviation.

TABLE I
Hurst exponent for USDPLN daily data

Size RS(avg) log(Size) log(RS)
2641 72.964 11.367 6.1891
1320 52.398 10.366 5.7114
660 32.131 9.3663 5.0059
330 23.909 8.3663 4.5795
165 16.679 7.3663 4.0600
82 11.353 6.3576 3.5051
41 7.2341 5.3576 2.8548
20 4.7010 4.3219 2.2330
10 3.0911 3.3219 1.6281

Coefficient Standard error
intercept –0.1773 0.0725
slope 0.5645 0.0093
Source: own computations in GRETL

Partial sums and range of partial sums of devi-
ations from a mean are defined as X(N, t0, τ) ≡∑t0+τ

t=t0+1 (rt −m(N, t0)) for 1≤ τ ≤N,
R(N, t0) ≡ max

τ
X(N, t0, τ)−min

τ
X(N, t0, τ).

Rescaled range statistics, defined as [R/S](N) ≡∑
t0

R(N,t0)∑
t0

S(N,t0)
, is equal to [R/S](N) ≈ (aN)H , where a —

constant term, H — the Hurst exponent. Hence as an

1906 applied for a post in Survey Department in Egypt, next in
Physical Department of the Ministry of Public Works, where he
later became a Director. He worked as a Scientific Consultant to
the Ministry until age of 88. His research started with magnetic
survey of Egypt, but soon he turned towards meteorology and
hydrography.

†† Another tool is fractal dimension; see [27] for a study of multi-
fractal methods for Polish data.

estimate of the Hurst exponent the following regression
results can be used: log ˆ[R/S](Ni) = ĉ + Ĥ log Ni, where
Ni correspond to several subsamples (of the original se-
ries), for which the R/S(Ni) statistics are computed.

In GRETL, the Hurst exponent is computed according
to this algorithm. Computations for logarithmic returns
of USDPLN daily data are shown in Table I. The estimate
of the Hurst exponent is equal to 0.5645, indicating the
long run dependence.

4. Example for USDPLN exchange rate and
returns

Table II shows results of the Dickey-Fuller test for stock
indices and exchange rates under study.

They indicate nonstationarity of levels and stationarity
or logarithmic returns. Similar are results of fractional
integration parameter computations (Table III). Only for
the USDPLN exchange rate returns the null of insignif-
icance can be rejected, however value of 0.10 is still in
the range of stationarity. The Hurst exponent estimates
(Table IV) also show nonstationarity of series and sta-
tionarity of returns.

4.1. Cointegration analysis for exchange rate and
indices

As exchange rates and stock indices are integrated of
order 1, we next check whether there is a stable dynamic
relationship between them. The Engle and Granger [12]
method of cointegration testing is based on testing for
stationarity of the OLS residuals from a regression of one
I(1) variable on the rest. Stationarity of residuals means
that the series are cointegrated and the OLS estimates
of parameters give the cointegrating vector (presumably
describing a stable relationship between the variables).

Fig. 3. Residuals of Engle-Granger regression.

Regression of USDPLN closing values on S&P500 and
WIG20 closing values gives the following results (Ta-
ble V).

If [1, –0.00509, 0.00126] were a cointegrationg vector
for USDPLN, SP500 and WIG20, then residuals of this
regression should be stationary. The ADF test statistics
for residuals equals −2.813, and has asymptotic p-value
0.056 — only slightly higher than 5%, but visual inspec-
tion of the residuals (Fig. 3) convinces us that their be-
havior is rather too volatile for stationarity. Hence we do
not reject nonstationarity of residuals, and cannot use the
OLS estimates for description of a stable relationship.
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4.2. ARIMA model for USDPLN

We next estimate an ARIMA model for first differ-
ences of the exchange rate, and with corresponding stock
indices as additional explanatory variables – an ARMAX
model for differences of USDPLN, based on observations
2000/01/05–2010/10/18. The results are shown in Ta-
ble VI. All variables are significant, roots of polynomials
have moduli greater than 1, hence the model is stable.

For the above ARMAX model, the Engle test statistics
LM = 307.262 with p-value = P [χ2(5) > 307.26] close to
zero. Hence the null hypothesis of no ARCH effect is
clearly rejected (as suggested by Fig. 4, which shows

that the ARMAX model residuals, albeit stationary in
mean, show changing volatility).

Fig. 4. Residuals of the ARMAX model show an
ARCH effect.

TABLE II
The augmented Dickey-Fuller test for stock indices and exchange rates

ADF test for Sample up to April 30 Sample up to November 19, 2010
Variable Log returns Variable Log returns

SP500close –1.825 [0.369] –12.281 [0.000] –1.900 [0.332] –12.582 [0.000]
WIG20close: –1.148 [0.699] –21.051 [0.000] –1.152 [0.697] –21.665 [0.000]
USDPLNclose –1.566 [0.500] –9.893 [0.000] –1.617 [0.474] –9.842 [0.000]
EURUSDclose –1.261 [0.650] –10.686 [0.000] –1.280 [0.641] –10.626 [0.000]
EURPLNclose –2.125 [0.235] –9.190 [0.000] –2.209 [0.203] –9.458 [0.000]
Asymptotic p-values in brackets.
Source: own computations in GRETL

TABLE III
Fractional integration parameter estimates

Series Geweke and Porter-HudakA log returns of a series: Geweke and Porter-HudakB

SP500close 0.9931 (0.053) [0.131] SP500close 0.0007 (0.055)
WIG20 close 1.0994 (0.079) [1.266] WIG20 close 0.0780 (0.064)
USDPLNclose 1.0721 (0.061) [1.165] USDPLNclose 0.1064 (0.058) [1.850]
In parentheses: standard errors of estimates;
In brackets: t-Statistics:
A: for a series: H0 : d = 1, B: for returns: H0 : d = 0

Source: own computations in GRETL

4.3. Spectral density

Figs. 5 and 6 show respectively periodogram of log-
arithmic returns for USDPLN exchange rate and ap-
proximation of its spectral density function, obtained in
GRETL by smoothing the periodogram with appropri-
ate weights (Bartlett weights)‡‡. The periodogram and
the spectral density approximation are also tools to de-
tect possible periodicity of the series. Fig. 6 suggests

‡‡ Similar weights are used in computation of unbiased estimator
of long-term variance of a series, in case of autocorrelation and
heteroskedasticity of the disturbance.

that there is some periodicity corresponding to a cycle of
half of the week, one week, and approximately two weeks
(note corresponding local maxima).

TABLE IV
The Hurst exponents

Hurst exponent for: variable logarithmic ret.
SP500 close 0.9689 0.5510
WIG20 close 1.0045 0.5685
USDPLNclose 1.0018 0.5645
Source: own computations in GRETL
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TABLE V
Regression of USDPLN closing values on:

Variable Estimate t-ratio p-value
SP500close 0.00509 133.1 0.0000*
WIG20close -0.00126 –61.52 0.0000*
Source: own computations in GRETL

TABLE VI
ARMAX model results for ∆USDPLN

Variable Coefficient Std. error z stat. p-value
Const -0.000448 0.000530 -0.846 0.3974
φ1 1.30899 0.216640 6.042 1.52·10−9*
φ2 -0.5598 0.159075 -3.519 0.0004*
θ1 -1.2727 0.226735 -5.613 1.99·10−8*
θ2 0.50518 0.168287 3.002 0.0027*
SP500cl. -0.0001784 3.87039·10−5 -4.609 4.05·10−6*
WIG20cl. -0.0001908 1.58094·10−5 -12.070 1.51·10−33*

Polynomial Real part Imagin. part Modulus Frequency
AR

Root 1 1.1691 -0.6477 1.3365 -0.0805
Root 2 1.1691 0.6477 1.3365 0.0805

MA
Root 1 1.2597 -0.6267 1.4069 -0.0735
Root 2 1.2597 0.6267 1.4069 0.0735
Source: own computations in GRETL

4.4. The ARCH-GARCH models for logarithmic
returns, with indices returns as additional explanatory

variables

The ARCH (Autoregressive Conditional Heteroskedas-
ticity) model, introduced by Engle [17] (see also [18]),
consists of one equation for expected value of a series,
and second equation for conditional variance of a series.
The Generalized ARCH models, introduced by Boller-
slev, [30–2] have an advantage of requiring smaller num-
ber of parameters to adequately represent the series (see

Fig. 5. Periodogram of USDPLN returns.

Fig. 6. Spectral density of USDPLN returns.

also [33] for description and examples of other GARCH-
type models and [34] for detailed analysis and examples
for the Polish data).

TABLE VII
The GARCH results for a whole sample

Variable Coefficient Std. error z p-value
rlUSDt−1 0.0702 0.0205 3.432 0.0006*
rlUSDt−2 0.0354 0.0204 1.733 0.0830*

α(0) 0.0121 0.0028 4.285 1.83·10−5*
α(1) 0.0791 0.0105 7.503 6.25·10−14*
β(1) 0.9053 0.0119 76.32 0.0*

Source: own computations

TABLE VIII
Additional variables can improve forecast ac-
curacy

GARCH model: without with
stock indices

Mean Error 0.1779 0.1769
Mean Squared Error 1.3414 1.2460
Root Mean Squared Error 1.1582 1.1163
Mean Absolute Error 0.9747 0.9480
Bias proportion, UM 0.0236 0.0251
Regression proportion, UR 0.1431 0.2625
Disturbance proportion, UD 0.8333 0.7124
Source: own computations

We estimate a GARCH model for logarithmic returns
of USDPLN exchange (with 2 lagged variables in the
mean equation, and 1 lag for both variance and squared
error in the conditional variance equation, see Table VII),
and the GARCH model with stock indices returns as ad-
ditional explanatory variables in the mean equation (not
shown here), next reestimate both GARCH models for
a shorter sample, and compare quality of ex–post fore-
casts for last month of data (Table VIII). Almost all mea-
sures (with the only exception of the regression propor-
tion) have slightly lower values for the model with addi-
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tional explanatory variable. Stock indices returns indeed
slightly improve performance of the model.

5. Conclusions

There is a vast econometric literature concerning non-
linear models of financial time series of changing volatil-
ity, see [34] for a detailed analysis with application to the
Polish markets. The crisis period and increased volatility
and risk, make the task of the exchange modeling much
more difficult than usual; hence any specification which
can improve the quality of the model and forecasts may
be of interest. In our empirical example, as in [3] for
shorter time series, use of returns of stock indices led to
slight improvement of ARMA and GARCH models for
the exchange rate returns. The last version of GRETL
allows a choice of several GARCH-type models with vari-
ants of probability distributions for its error terms.

There are also several variants of non-stationarity tests
used in applied econometrics, some of them already im-
plemented in GRETL.

Perhaps if we look for a way of improving the analysis
presented here, it would be to choose and implement bet-
ter versions of the Hurst algorithms — and to this aim
results of research such as [35], [36], can be of help.
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