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We study two models of pedestrian evacuation based on cellular automata and intelligent agents. We use the
static floor field approach and augment it with additional transition rules (random movement and preservation
of personal space) in order to model various aspects of human behaviour. Through numerical simulations we
investigate pedestrian evacuation from rooms with various geometries (e.g. empty room, classroom). Using
heatmaps (density diagrams of pedestrians), average evacuation times, velocity and other parameters we study
the effectiveness of evacuation and potential dangers pedestrians may encounter.
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1. Introduction

The problem of pedestrian evacuation has attracted
a lot of attention in the last few years [1]. Scientists
from many different fields used various mathematical
and physical approaches to model and study this phe-
nomenon. Such studies are very important and may lead
to an increase in safety and better understanding of the
dangers pedestrians face during evacuation.

Existing models of pedestrian evacuation are based
on either the Langevin equation [2–6] or cellular au-
tomata [7–13] (for an introduction to cellular automata
see [14, 15]). In the Langevin equation approach both
time and space are continuous. Pedestrians are treated
like particles interacting with the surrounding world
through so called social forces. Models based on cellular
automata are intrinsically discrete and usually employ
various kinds of static and dynamic floor fields to govern
the motion of pedestrians.

In [16] we introduced two simple models of pedestrian
motion based on cellular automata. Our goal was to sim-
plify the usual cellular automata approach (which often
involves complicated rules) and create a modular envi-
ronment where simple rules can be connected using eas-
ily understandable parameters to form complex systems
with rich behaviour. Both model were used to simulate
evacuation on staircase-like geometries. In this work we
present some general properties of our two models in their
most basic form using two most commonly studied ge-
ometries - empty room and classroom (Fig. 1).

2. Model

We assume that space is discrete, much like in a two-
dimensional cellular automata, and divided into square
cells of equal size. There are three kinds of cells:
floor cells (without any additional properties), exit cells

Fig. 1. Classroom with 30 students and 1 teacher.

(pedestrians at these cells are removed from the system)
and wall cells (obstacles that cannot be occupied). Each
cell can be occupied by only one pedestrian. Time is
also discrete, with pedestrians moving asynchronously in
a random order (shuffle update). Both models presented
in this paper are build on top of a simple static floor field
introduced in [9]. In this approach, each cell is assigned
a value according to the following, iterative algorithm:

1. Exit cells are assigned value 1.

2. During subsequent iterations each cell that was as-
signed a value (v) in the previous iteration tries to
assign a value to all its neighbours: v + 1 to the
horizontal and vertical neighbours, v + 1.5 to the
diagonal ones. If this procedure leads to a conflict
(when two cells try to assign a value to the same
neighbouring cell) then the lowest floor field value
is used.

3. Wall cells, to make them inaccessible, are assigned
the highest possible floor field value.

The resulting floor field values can be interpreted as the
distance from a given cell to exit cells and are very similar
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to the Manhattan metric. In this model, however, mo-
tion in the vertical direction is also possible. The floor
field defined above can be used, on its own, to simulate
pedestrian movement. In our work we use it as a basis
and augment it, in a modular fashion, with additional,
simple rules. Such an approach allows to easily decom-
pose various aspect of pedestrian motion into smaller,
logical elements and study their influence on the overall
dynamics of pedestrians.

The first variation of the above model we want to
present is called floor field model with random movement
(FFRM for short). FFRM is similar to biased random
walkers introduced by Nagatani [7, 8]. In FFRM pedes-
trians move:

1. with probability (1 − β) to the neighbouring cell
with the lowest floor field value (as long as this
value is lower than the floor field value of the cell
currently occupied by the pedestrian),

2. with probability β to a random neighbouring cell.

When β = 0, pedestrians move according to the pure
static floor field and simply follow the shortest path to
the exit. With β = 1, pedestrians behave like random
walkers - with equal probability they move in any avail-
able direction even if it takes them away from the exit.
For intermediate values of β, these two behaviour inter-
twine. It should be noted that this model is a two dimen-
sional equivalent of a one dimensional ASEP (asymmetric
simple exclusion process). ASEP, a simple model of par-
ticle transport, have successfully been used to model car
traffic.

Our second variation of the static floor field model is
called floor field with pressure (FFP). When moving ac-
cording to FFP rules, pedestrians try to preserve some
personal space, that is to minimise their number of neigh-
bours. In order to do that, they move:

1. to the neighbouring cell with the lowest floor field
value (as long as this value is lower than the floor
field value of the cell currently occupied by the
pedestrian) with probability 1 when there are no
other pedestrians in the neighbouring cells, or with
probability (1 − β) when there are other pedestri-
ans,

2. to a neighbouring cell surrounded by the small-
est number of pedestrians with probability β when
there are other pedestrians in the neighbourhood.

It means that for β = 0, much like in FFRM, pedestri-
ans move according to the pure static floor field model.
When β = 1, they still follow the shortest path to the
exit as long as there are no other pedestrians in their
vicinity. However, if there is at least one neighbour in
their neighbourhood, then they will always try to move
away.

The biggest difference between FFRM and FFP lies in
the way both rules are applied for intermediate values

of β. In case of FFRM, pedestrians always move either
randomly or in the direction of the exit. In FFP, how-
ever, their behaviour is highly dependent on the number
of neighbours. Even when β = 1, it is possible for pedes-
trians moving according to FFP, as long as they do not
encounter any other pedestrians, to never stray from the
shortest path.

In FFRM β can be regarded as a measure of panic or
irrationality in the behaviour of pedestrians. Low val-
ues of β correspond to low levels of panic/irrationality,
high values correspond to high levels. Using this inter-
pretation we can choose β appropriate for the simulated
environment and situation. For example, when there is
no immediate danger or the evacuation process is efficient
due to training or professional execution, pedestrians are
more likely to make rational choices. However, parameter
β in FFP plays a slightly different role (it is a measure of
a certain psychological inclination) and the proper choice
of β would require a more detailed empirical study. One
could expect that people, when facing danger, would be
willing to sacrifice certain level of comfort by reducing
their personal space.

3. Measured quantities

Before we begin to present our results it is important to
specify exactly what quantities we measure during sim-
ulations. One of the most important and widely used is
average evacuation time. Average evacuation time is de-
fined as the number of time steps a pedestrian spends in
the system before exiting through one of the exits, aver-
aged over all pedestrians and then averaged over multi-
ple realisations of the system. Average evacuation time
is a measure of the efficiency of evacuation and, generally
speaking, the lower the better.

Using average evacuation time we constructed another
possible measure - average relative evacuation time. It is
defined as the number of time steps a pedestrian spends
in the system divided by the average number of time steps
a pedestrian starting at the same cell would spend in the
system if they were the only pedestrian in the system
(averaged over all pedestrians and multiple realisations).
To put it simply, in order to calculate average relative
evacuation time we place a pedestrian in a cell (we do it
for all cells, one cell at a time) and calculate the average
evacuation time for this particular cell. Once it is done,
during the actual simulation, pedestrians remember the
average evacuation time associated with their starting
cells and when they leave the system, their evacuation
time is divided by this value. Average relative evacuation
time allows us to see how other pedestrians in the system
affect the evacuation process.

In most papers systems like ours are visualised by
drawing simple snapshots at some time step t. We use a
different approach which, in our opinion, contains much
more information. Instead of drawing snapshots, we con-
struct density diagrams - roughly speaking, images com-
bining information from multiple realisations of the sys-
tem. In order to create a density diagram we have to
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define an occupancy function

c
(k)
ij (t) =





1 if there is a pedestrian at cell ij

during time step t

0 if cell ij is unoccupied during
time step t

(1)

which tells us whether cell ij was occupied by a pedes-
trian at time step t in the k-th realisation of the system.
Using this function we can calculate the probability that
cell ij will be occupied at time step t by averaging c

(k)
ij (t)

over multiple realisations

dij(t) =
1
N

N∑

k=1

c
(k)
ij (t) (2)

The last step in creating a density diagram is to map
dij(t) into some colour scale (a heat-map). It should be
noted that this definition varies slightly from the one pre-
sented in [16]. Due to the nature of the system studied in
that paper the average was taken over time rather than
realisations. The definition introduced above is a more
general one.

4. Results

In this section we present some general properties of
our models using simple, frequently studied geometries
- empty room and classroom (see [16] for a more com-
plicated case). Empty room consists of a rectangular
grid with L2 cells (in all simulations presented in this
paper L = 25 which means pedestrians can occupy
(L − 2)2 = 526 cells). Sides of the rectangle are set
to wall cells except for a single side where l cells in the
middle are set to exit cells (doors). At the beginning of
each simulation pedestrians are randomly distributed in
the room.

Fig. 2. Empty room (FFP): average evacuation time
as a function of initial fraction of occupied cells for dif-
ferent values of β.

For FFP, both average evacuation time and average
relative evacuation time increase with initial fraction of
occupied cells (Figs. 2, 3). For low values of initial frac-
tion of occupied cells β has got a high influence on evac-
uation time - when pedestrians prioritise the preserva-
tion of personal space it takes them longer to reach the
exit. However, as the number of pedestrians in the sys-
tem increases, the impact of β on the dynamics grows

Fig. 3. Empty room (FFP): average relative evacua-
tion time as a function of initial fraction of occupied
cells for different values of β.

smaller and the difference between evacuation times be-
comes negligible. Such a behaviour can be easily ex-
plained by the fact that for high values of initial frac-
tion of occupied cells pedestrians quickly form a big clus-
ter (spanning nearly the entire room at the beginning)
around the exit. Pedestrians next to the exit are pushed
out from the system, pedestrians in the middle are either
stuck or pushed towards the exit and pedestrians at the
rim of the cluster (the ones influenced by β the most) try
to separate from it by moving away, but they still stay
in its vicinity. The cluster shrinks and eventually disap-
pears. It follows that the longer it takes for the cluster to
form the more important are the interactions between in-
dividual pedestrians in the time preceding its formation
(when many pedestrians interact).

Fig. 4. Empty room (FFP): average evacuation time
as a function of β for initial fraction of occupied cells =
1/4 and various door lengths.

When initial fraction of occupied cells is set, average
evacuation time and average relative evacuation time in
FFP increase with β (Figs. 4, 5) and for high values of β
their dependency is linear. When we increase the width
of the exit pedestrians are able to leave the system faster.
It should be noted that average evacuation time and aver-
age relative evacuation time do not change linearly with
the width of the exit.

Contrary to what we can observe in FFP, average evac-
uation time in FFRM depends highly on β (Fig. 6) for all
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Fig. 5. Empty room (FFP): average relative evacua-
tion time as a function of β for initial fraction of occu-
pied cells = 1/4 and various door lengths.

Fig. 6. Empty room (FFRM): average evacuation time
as a function of initial fraction of occupied cells for dif-
ferent values of β.

values of initial fraction of occupied cells. When initial
fraction of occupied cells is low, average relative evacua-
tion time is almost independent of β (Fig. 7). The reason
for that is simple - unlike FFP, interactions in FFRM are
implicit (resulting from the fact that two pedestrians can-
not occupy the same cell). With only a few pedestrians
present in the system, relative to the total number of
available cells, such interactions are negligible. For high
values of β average relative evacuation time increases
with initial fraction of occupied pedestrians linearly.

Fig. 7. Empty room (FFRM): average relative evacu-
ation time as a function of initial fraction of occupied
cells for different values of β.

Fig. 8. Empty room (FFRM): average evacuation time
as a function of β for initial fraction of occupied cells =
1/4 and various door lengths.

Fig. 9. Empty room (FFRM): average relative evacu-
ation time as a function of β for initial fraction of occu-
pied cells = 1/4 and various door lengths.

When initial fraction of occupied cells is set, average
evacuation time in FFRM increases with β (Fig. 8). How-
ever, the dependency between average relative evacuation
time and β in FFRM is much different than its FFP coun-
terpart. Average relative evacuation time decreases with
increasing β and for very high values of β it is lesser than
one. It means that pedestrians in the system actually
help each other to reach the exit. A similar, though more
interesting behaviour (with the same underlying cause)
can be observed in staircases [16].

Figure 10 shows density diagrams for empty room.
The influence of β is clearly visible - for both FFP and
FFRM the cluster forming around the exit is more di-
luted. While evacuation time is inevitably greater than
in pure floor field model, the decrease in pedestrian den-
sity increases the overall safety of the evacuation process.

The geometry of a typical classroom is depicted in
Fig. 1. In the examples presented in this paper we assume
there are 30 students in the classroom, placed at the be-
ginning of the simulation in front of their desks. Desks
are arranged in three columns. The teacher stands next
to their desk, near the blackboard. The exit, 2 cells wide,
is located on the same wall as the blackboard.

The results of simulations obtained for classroom ge-
ometry are similar to the ones we observed for an empty
room. When FFP rules are used, average evacuation
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Fig. 10. Empty room: density diagram for β = 0.5 at
three different time steps (time increases from top to
bottom). The warmer the colour the higher the density.

Fig. 11. Classroom: average evacuation time as a func-
tion of β.

time, after initial nonlinear period for low β, changes lin-
early with β (Fig. 11). This dependency is always non-
linear for FFRM. Average relative evacuation time, as
in an empty room, exhibit a more interesting behaviour
(Fig. 12). It increases with β for FFP, but decreases for
FFRM. For high values of β average relative evacuation
time is lesser than one - it means that for a highly ran-
dom behaviour pedestrians help each other to reach the
exit.

Fig. 12. Classroom: average relative evacuation time
as a function of β.

Density diagrams (Fig. 13) also confirm, even more
vividly, that density of pedestrians is lower for FFP and
FFRM than in pure floor field model. Clusters of pedes-
trians that inevitably form near the exit are more diluted,
which means evacuating pedestrians are less likely to, for
example, sustain injuries. It is interesting that seemingly
irrational behaviour can increase the safety of pedestri-
ans.

5. Conclusions

The two models presented in this paper, despite their
simplicity, seem to mimic various aspects of human be-
haviour. The models are general and can be used for
any geometry (for example, with a clever manipulation
of floor field values, it should be possible to combine
systems like rooms and staircases into one, big system).
Their modular nature allows for an easy composition of
complex systems with multiple layers of interacting rules.

The average relative evacuation time and density dia-
grams are useful tools that provide interesting informa-
tion about the dynamics. These measures can be used
in any cellular automata based and (without much addi-
tional effort) continuous models. Density diagrams seem
to be a good alternative for simple snapshots and are
helpful in localising threats that would otherwise be over-
looked.

Simulations performed for an empty room and class-
room confirm our findings presented in [16] for staircase-
like geometries. While it is tempting to associate the
efficiency of evacuation with average evacuation time,
often other factors are important and cannot be over-
looked. Following the shortest path to the exit is not
always the best option. While irrational behaviour in-
creases the evacuation time, it can lead to an overall in-
crease in safety.
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Fig. 13. Classroom: density diagram for β = 0.5 at
different time steps (time increases from top to bottom).
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