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Price–Volume Relationship in Polish Stock Market
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A relationship between daily prices of Polish WIG index and trading volumes is investigated. By in-
troducing variables related to a number of last prices and volumes, a history of values in a certain period
of time (which could be regarded as an investor memory) is taken into account. Different characteristics of
autocorrelations for prices and trading volumes are observed. By studying mutual correlations between the
variables, a local maximum at about 100 trading days is discovered. The Granger causality test is performed,
indicating very strong influence of prices on volumes. This property can be considered as a sign of markets maturity.
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1. Introduction

The levels of prices and trading volumes are the base
quantities describing current situation on a stock ex-
change (stock market). Those quantities are observed by
investors with a big concern. They are the one of the base
criteria during investment decision making but the rela-
tions between them have much deeper meaning. Among
others, they allow for overall performance evaluation of
stock markets, give insight about spreading new informa-
tion, and influence the operation of futures markets [1,
2]. For these reasons prices, volumes and their mutual
relations are the subject of numerous scientific papers
[1–6]. In a majority of works daily changes of prices and
volumes – daily return rates are analyzed. However in-
vestors look further in the past and compare the current
prices and volumes to their level in shorter or longer time
horizon. The length of the horizon is of course the matter
of an investor’s decision. It may be equal to dozens or
even hundreds of days.

In this paper we would like to study the problem of
relations between prices and volumes from an investor’s
point of view. We propose new variables which express
current prices and volumes in relation to their past values
observed in a certain time horizon (investor memory).
We study the distributions of the variables and a degree
of the autocorrelations as a function of the investment
horizon. During next step we analyze mutual correlations
between the variables as well as we investigate causality
of those correlations with the means of the Granger test.

2. Data selection and variables

We analyze the main Polish Stock Exchange index
WIG which reflects the behavior of the stock market.
Data consist of daily closure prices and trading volumes
from 02-01-1995 to 21-10-2010, what corresponds to 3961

days. We excluded from analysis the first few years re-
lated to the preliminary stage of the operation of Polish
market, when the number of assets was very small and
they weren’t even priced every day.

Fig. 1. WIG daily prices and trading volumes for an-
alyzed period of time. Time is expressed as an ordinal
number of trading day.

First of all we would like to draw attention to the fact
that prices as well as volumes increased by a few orders
of magnitude in the last 15 years (Fig.1). So the term
“big” or “small” price (volume) cannot be applied directly
to the raw data. In order to be able to compare the
changes of data within so wide period of time we define
the new time series. We compare the current price of the
WIG index to the average closure price of the last k days.
The k will be called window and will reflect the memory
of an investor. Volume will be treated the same way –
dividing daily trading volume by the average of the last
k volumes. Thus values of the new time series could be
expressed as:

Pk t =
pt

1
k (pt−1 + pt−2 + . . . + pt−k)

(1a)

(B-61)
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Vk t =
vt

1
k (vt−1 + vt−2 + . . . + vt−k)

, (1b)

where pt and vt- daily closure price and trading volume
respectively, at time t, (t = k + 1, . . . , 3961). Time t will
be the ordinal number of session and k – the size of the
window. We analyzed windows sizes starting from 1 to
400. The latter corresponds to almost two-year-window,
which is relatively long memory horizon. For the window
of 1 makes P1 t, V1 t become daily price and volume return
rates. We will further denote by Pk, Vk the variables with
values of Pkt and Vkt respectively.

3. Behavior of price variable

The sample time series of the P201 and P401 are pre-
sented in Fig. 2, together with the WIG index and run-
ning averages of the 201 and 401 prices respectively. On
the horizontal axes time is represented by the ordinal
number of trading days.

Fig. 2. WIG daily prices as well as 201 and 401 ses-
sions running averages (upper plots) for analyzed period
of time. Daily values of P201 and P401 are also shown
(bottom plots).

There are no visible trends for the both variables. Sim-
ilar behavior was observed for other analyzed values of k.
On the other hand the increase of dispersion of Pk with
k could be observed (please note different vertical scale
on the bottom plots). The behavior of the dispersion
is obvious because our variable depends on the greater
number of historical prices. We present distributions of
variable Pk for selected values of k in Fig. 3.

Fig. 3. Distributions of Pk for selected values of k.

Fig. 4. The distributions of P̃k = ln(Pk) for selected
values of k.

Distributions of Pk could be approximated by normal
distribution. However, by definition, values of Pk are
within the range 0 to infinity what is inconsistent with
the range of normal distribution. Such a discrepancy
became more and more significant when analyzing big-
ger windows because of the increase of Pk dispersion. In
order to have the consistent analysis in full range of win-
dows we will use variable P̃k = ln(Pk). The distributions
of P̃k together with the fits of normal distributions for
selected values of k are presented in Fig. 4.

We utilized a normal distribution described by the
function given by

f(x) = a exp(− (x− µ)2

2σ2
), (2)

where a is a normalization factor, µ denotes an average
value, and σ is a standard deviation.

We applied a normal fits to P̃k for the full range of win-
dows analyzed. Their qualities have been measured by
R2 and were within the range of 0.9 to 0.99, decreasing
with th window size. In order to find possible autocorre-
lations we investigated the width of the distributions as
a function of the window size. Of course in the case of fit
and data discrepancy the width of the normal distribu-
tion fitted could be not reliable. So to measure the width
independently we used interquantile range to measure the
dispersion. Of course we are aware of other methods of
evaluating the dispersion but the detailed analysis of this
aspect is beyond the scope of this paper. However, in fur-
ther work we plan to perform comprehensive fluctuation
analysis based on the well-known Hurst exponent.

In the case of the absence of autocorrelations the width
of the distribution scales as a power function of number
of periods with the exponent equal to 0.5. The quality of
the power fit in both cases is very good (Fig. 5). Obtained
result indicates on a weak positive autocorrelations – ex-
ponent being 0.55± 0.01. That means the dispersions of
the distributions are somewhat greater that in the case
of the lack of autocorrelations and indicate on keeping
trend.
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Fig. 5. Width of the Gaussian fit (left plot) and in-
terquantile range (right plot) as a function of the win-
dow size.

4. Behavior of volume variable

By analogy to prices, in Fig. 6 we present WIG trad-
ing volumes together with moving average (top plots)
and time series Vk (bottom plots) for k = 201 and 401.
It can be noticed that dispersion of trading volumes is
much bigger than it is for prices. There are also visible
huge spikes for some isolated days. Time series for trad-
ing volumes qualitatively resemble price time series (see
Fig. 1), where big prices come together with big volumes.

Fig. 6. WIG daily volumes as well as 31 and 201 ses-
sions running averages (upper plots) for analyzed period
of time. Daily values of V31 and V201 are also given (bot-
tom plots).

The distributions of Vk are asymmetric toward the re-
gion of high volumes and are very well described by the
log-normal function. To show this fact we present the
distributions of Vk for k = 51, 101, 201, and 401 together
with the log-normal fits given by the Eq. (2).

The very good fit quality is characteristic for all the
windows analyzed: R2 being of about 0.99 (Fig. 7).
Hence distributions of Ṽk = ln(Vk) are Gaussians. Be-
cause of the very good agreement of data with fitted
function there is no need to use positional measurements
of the dispersion like interquantile range, what was the
case for prices. We present the width of the distributions
as the function of number of periods – trading days in
Fig. 8. The width scales as a power law however the expo-
nent is far lower than in the absence of autocorrelations.
The fit exhibits the very large negative autocorrelations
(0.101±0.003). When increasing the horizon the increase
of the width of the volume distribution keeps to be rela-
tively small. One should keep in mind that a number of
assets is limited and usually large demand causes rather

Fig. 7. The distributions of Ṽk = ln(Vk) for, k = 51,
101, 201, and 401, together with the normal fits given
by the Eq. (2).

price to increase instead of a big volume. When a price
increases some people change their mind and do not buy
assets. And thus the volume does not increases as was
intended. Similar behavior takes place in the case of big
supply which causes price to drop and thus some people
refuse to sell the assets they possess limiting trading vol-
ume. On the other hand the prices are not limited, they
can be very big.

Fig. 8. Width of the distributions as a function of the
window size together with the power fit (left plot).
Gaussian fit quality expressed by R2 as a function of
the window size (right plot).

5. Price–volume relationship

We calculated the correlation coefficients r between P̃k

and Ṽk for the analyzed windows sizes, which are pre-
sented in Fig. 9.

As can be seen the correlation coefficient r has a local
maximum for an investor memory of about 75 trading
days, what corresponds to roughly four months. The
maximum is followed by the relatively flat minimum for
100–150 trading days. After that the correlation in-
creases linearly. We investigate the relationships between
both variables in more details in the following part of this
paper.

We further investigate the relationship between prices
and volumes by studying the 2-dimensional correlation
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Fig. 9. Correlation coefficient r between P̃k and Ṽk.

Fig. 10. Correlation plots for k = 5, 51, 101, 151, 201,
and 301.

plots. The plots for selected values of k are given in
Fig. 10. In order to quantitatively describe the relation-
ship we applied the following procedure. For each of the
investment horizon we calculated the histogram repre-
senting correlation plot. To each of the histogram we fit
the 2-dimensional normal distribution given by the:

f(p, v) =
A

2πσ1σ2

√
1− ρ2

exp

(
−1

2(1− ρ2)

[
(p− µ1)2

σ2
1

−2ρ(p− µ1)(v − µ2)
σ1σ2

+
(v − µ2)2

σ2
2

])
, (3)

where parameters µ1, µ2, σ1, σ2 are two average values
and two standard deviations of marginal distributions of
P̃k and Ṽk. Parameter ρ is the correlation coefficient
(|ρ| ≤ 1).

Parameters of the function (3) have been evaluated by
minimizing χ2 weighted by the inversed error of data. For
every histogram bin we calculated the error as a squared
root of the bin content. As a fit quality we used weighted
χ2 divided by the number of degrees of freedom. For all
the investigated windows we obtained a good fit quality.

We investigated the fit parameters describing the shape
of the 2-dimensional distributions as a function of the

Fig. 11. Joint distribution of P̃k and Ṽk for the window
of 151 days.

Fig. 12. Correlation coefficient versus the window size.
investor memory. For the next part of this paper we
describe the behavior of the correlation coefficient and
the slope of the regression model given by the Ṽt = mP̃t+
n + εt (Fig. 11).

The correlation coefficient obtained using the function
(4) exhibits previously noticed local maximum (see Fig.
12). We obtained slightly different position of the local
maximum because of the implementation of different pro-
cedure (compare to Fig. 9). Previously we simply calcu-
lated the correlation coefficient between two time series,
where each data point has been taken into account with
equal weight. Now we fit 2-dim normal distribution using
the weighted χ2 method, where every point on the dis-
tribution has been weighted based on its inversed error.
The latter method favors points with small errors while
points with large errors have minor impact on the fitted
function parameters.

As can be seen in Fig. 10 the distribution of points in
the correlation plots tends to rotate in the direction of P
axis. In order to investigate this behaviors we plot the
slope of the regression line as a function of window. The
slope seems to stabilize on the level slightly above 1 at
the window of about 250 trading days (Fig. 13). This
point is close to the local minimum in Fig. 11 where
the correlation coefficient assumes local minimum value.
Those points correspond to the investor memory of about
200–250 days what correspond to roughly one year. It
is close to the value of local autocorrelations described
in the frames of the local Hurst exponent [7-9]. The
stabilization means that investors do not look beyond the
horizon of about one year. In order to present the result
of coefficient stabilization we plot its values for windows
up to 1000 of trading days.
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Fig. 13. Slope parameter as a function of the window
size.

6. Price–volume causality

The last part of this paper is devoted to the study of
relationship between prices and volumes in frames of the
Granger causality. We would like to obtain the answer
for the question: does P̃k cause Ṽk or vice-versa. One
can say that X variable Granger causes Y (X → Y ), if
the current values of Y can be predicted with the greater
accuracy then X taking into account past values of both
X and Y [10, 11]. The starting point in the Granger test
is the vector autoregressive model given by

Ṽt = B0 +
l∑

i=1

αiṼt−i +
l∑

i=1

βiP̃t−i + εt, (4)

where Ṽt and P̃t are values of the variables Ṽk and P̃k

respectively, for a given window size k.
The null hypothesis is β1 = β2 = . . . = βl = 0, what

means that P̃k does not Granger causes Ṽk. With the
assumption that null hypothesis is true the statistics SG
of the Granger test has F distribution (see [11, 12] for
details). If the SG/F ∗, (where F ∗ is a critical value)
exceeds 1, we can conclude that null hypothesis is false.
Using the Granger test we study causality in both direc-
tions: P̃k → Ṽk and Ṽk → P̃k. In Fig. 14 we plot the
SG/F ∗ for k = 55 and 201 as a function of the number
of past values taken into account by the test, see Eq. (4).

Fig. 14. The SG/F ∗ as a function of the number of
past values taken into account during prediction using
Granger test for two size of the window: 51 (left plot)
and 201 (right plot).

As can be seen in Fig. 14 the plots stabilize at a certain
level. This behavior is characteristic for all the windows
investigated. During the next step we assume common

number of past values in the Granger test equal to 12,
for all the windows studied.

Fig. 15. The SG/F ∗ as a function of the window size.

We plot value of SG/F ∗ as a function of window for
both scenarios: P̃k → Ṽk and Ṽk → P̃k in the Fig. 15.
Thus we are able to study both the presence the direc-
tional causality as well as to compare the force of the
effect for various sizes of windows.

The values of SG/F ∗ in Fig. 15 unambiguously prove
that P̃k causes Ṽk (P̃k → Ṽk). This effect is very clear
because for all the windows the Granger statistics exceed
the critical values for at least 8 times. On the other hand,
in the case of the inverse relation Ṽk → P̃k we observe
low values of SG/F ∗, thus we face the one-directional
causality. For the majority of windows the ratio does not
exceed unity, thus for those instatnces volumes cannot
be regarded as a cause of prices. However for selected
values of k one can speak about two-directional relation.
Spikes visible in Fig. 15 (upper plot) indicate that for
some window sizes, mainly of about 65 and 85, volumes
could also cause prices.

In the case of Polish market we observe similar behav-
ior to the one characteristic for US market, while being
different from the one observed for emerging markets in
Latin America. For the latter one can conclude that vol-
umes influence prices [6]. In the majority of analyses re-
garding mature financial markets the influence of prices
on volumes with no reverse relation has been observed
(see for example [13, 14]). More complex dependency has
been observed for emerging markets. For some of them
the mutual dependency exists. The behavior similar to
the one observed for Polish market (prices causing vol-
umes) has been also observed for Mexican market, which
is under great influence of the US mature one.

7. Summary and conclusions

The relationship between prices and volumes has been
studied using the new variables Pk and Vk as well as
P̃k = lnPk and Ṽk = ln Vk, which take into account his-
torical horizon of prices and volumes respectively. The
conclusions can be summarized in the following items.

1. Distributions of Pk and Vk are log-normal, thus P̃k

and Ṽk are normal. Moreover the compatibility of
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Vk with log-normal is very high, regardless of the
window size k.

2. The P̃k exhibits weak positive autocorrelations
indicating on small tendency to keep trend of
changes. On the other hand the Ṽk has very strong
negative autocorrelations.

3. Linear correlation coefficient between P̃k and Ṽk

has a local maximum of 0.5 at a window of about
100 trading days. The maximum is then followed
by the relatively flat minimum around k = 200.
After the minimum correlation coefficient increases
monotonically with the window size.

4. The 2-dimensional correlation plots are well de-
scribed by the 2-dimensional Gaussian functions.
Distributions rotate with the window size toward
price axis. The rotation of the distributions was
described by the slope of the regression model
Ṽt = mP̃t + n + εt. The value of m decreases for
k ∈ [1; 250] and then stabilizes on the level of about
1. So the increasing window size (investor mem-
ory) does not change the slope. This means that
investors do not look beyond the horizon of about
one year.

5. For each k price P̃k causes Ṽk. This effect is very
strong and is characteristic for mature markets. For
some values of k the volumes also causes the price,
so the relation is then two-directional.
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